Relations and Functions

7. Composition of Functions:

Let f : A → B and g : B → C be two functions. Then the composition of f and g, denoted by gof, is defined as the function gof : A -> C given by
gof=g(f(x) for all x ∈ A

f(x) =(x+3)
g(x) =x2

fog=f(g(x))=f(x2)=x2 +3

In this case
fog ≠ gof

8. Invertible Function:

If the Function f : A-> B is both one to one and onto i.e bijective ,then we can find a function g: B-> A
such that
g(y)=x when y=f(x). It is denoted as f-1. The function f(x) is called invertible function

Another defination of Invertible function A Function f : A-> B is invertible if we can find a function g: B- > A such that
fog=y gof=x
A set A is defined as A={a,b,c}
Let f: A-> A be the function defined as are
1) f={(a,a),(b,b),(c,c)}
2) f={(a,b),(b,a),(c,c)}
3) f={(a,c),(b,c),(c,a)}
Find if all these function defined are invertible
Solutions 1) The neccesary condition for invertibleness is one on one and onto
This function is clearly one on one and onto,so it is invertible
2) This function is clearly one on one and onto,so it is invertible
3) This function is not one on one and neither onto,so it is not invertible

Related Topics

link to this page by copying the following text

Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology

Latest Updates
Synthetic Fibres and Plastics Class 8 Practice questions

Class 8 science chapter 5 extra questions and Answers

Mass Calculator

3 Fraction calculator

Garbage in Garbage out Extra Questions7