Kinetic Theory Of Gases

10. Mean free Path

  • On the basis of kinetic theory of gases, it is assumed that the molecules of a gas are continously collilding against each other.
  • Molecules move in straight line with constant speeds between two successive collisions.
  • Thus path of a single molecule is a series of zig-zag paths of different lengths as shown in fig -.

    Mean free Path
  • These paths of different lengths are called free paths of the molecule

  • Mean Free Path is the averege distance traversed by molecule between two successive collisions.
  • If s is the Total path travelled in Ncoll coilisions, then mean free path
         λ= s/Ncoll
    Expression for mean free path :
  • Consider a gas containing n molecules per unit volume.
  • We assume that only one molecule which is under consideration is in motion while all others are at rest.
  • If σ is the diameter of each molecule then the moving molecule will collide with all these molecules where centers lie within a distance from its centre as shown in fig

    <Mean free Path -2

  • If v is the velocity of the moving molecule then in one second it will collide with all moleculeswith in a distance σ between the centres.
  • In one second it sweeps a volume πσ2v where any other molecule will collide with it.
  • If n is the total number of molecules per unit volume, then nπσ2v is number of collisions a molecule suffers in one second.
  • If v is the distance traversed by molecule in one second then mean free path is given by
         λ = total distance traversed in one second /no. of collision suffered by the molecules

  • This expression was derived with the assumption that all the molecules are at rest except the one which is colliding with the others.
  • However this assumption does not represent actual state of affiar.
  • More exact statement can be derived considering that all molecules are moving with all possible velocities in all possible directions.
  • More exact relation found using distribution law of molecular speeds is
    its derivation is beyond our scope.

Go Back to Class 11 Maths Home page Go Back to Class 11 Physics Home page

link to us