\(A \times B = \left\{ {\left( {a,b} \right):a \in A,b \in B} \right\}\)

If either \(A\) or \(B\) is the null set, then \(A \times B\) will also be empty set, i.e., \(A \times B\)

A relation \(R\) from a non-empty set \(A\) to a non-empty set \(B\) is a subset of the cartesian product \(A \times B\).

It *"maps"* elements of one set to another set. The subset is derived by describing a relationship
between the first element and the second element of the ordered pair \(\left( {A \times B} \right)\).

**Domain:** The set of all first elements of the ordered pairs in a relation \(R\) from a set
\(A\) to a set \(B\) is called the *domain* of the relation \(R\).

**Range:** the set of all the ending points is called the *range*

- A function is a "well-behaved" relation
- A function \(f\) is a relation from a non-empty set \(A\) to a non-empty set \(B\) such that the domain of \(f\) is \(A\) and no two distinct ordered pairs in \(f\) have the same first element.
- For a relation to be a function, there must be only and exactly one \(y\) that corresponds to a given \(x\)
- If \(f\) is a function from \(A\) to \(B\) and \(\left( {a,{\rm{ }}b} \right) \in f\), then \(f\left( a \right) = b\), where \(b\) is called the image of \(a\) under \(f\) and \(a\) is called the preimage of \(b\) under\(f\).

*Real Value Function: * A function which has all real number or subset of the real number as it domain

*Real Valued Function:* A function which has all real number or subset of the real number as it range

For functions \(f:{\rm{ }}X - > {\bf{R}}\) and \(g:{\rm{ }}X - > {\bf{R}}\), we have

*Addition*

\(\left( {f + g} \right)\left( x \right) = f\left( x \right) + g\left( x \right),x \in X\)*Substraction*

\(\left( {f - g} \right)\left( x \right) = f\left( x \right)-g\left( x \right),x \in X\)*Multiplication*

\(\left( {f.g} \right)\left( x \right) = f\left( x \right).g\left( x \right),x \in X\)*Multiplication by real number*\(\left( {kf} \right)\left( x \right) = k{\rm{ }}f\left( x \right),x \in X\), where \(k\) is a real number.*Division*

\(\frac{f}{g}\left( x \right) = \frac{{f(x)}}{{g(x)}}\)

\(x \in X\) and \(g\left( x \right) \ne 0\)

Please click here to get the full material for Class X1

Go Back to Class 12 Maths Home page Go Back to Class 12 Physics Home page

- Mathematics - Class XII (Set of 2 Volumes)
- NCERT Solutions: Mathematics 12th
- NCERT Exemplar Problems: Solutions Mathematics Class 12
- Together with Mathematics with Solutions Class-12
- CBSE 15 Sample Papers Mathematics for Class 12th
- 37 Years Chapterwise Solved Papers (2015-1979): IIT JEE - Mathematics
- New Pattern Mathematics for JEE (Main): Advanced
- Mathematics Errorless JEE Main JEE Advanced Vol. I & II 2015