Here we are trying to give the Class 9 Maths Problems for Number System. This contains tough/difficult questions on number system class 9. I hope you like the questions
Question 1
Find the value of each of the Following
a. $2^{1/4} \times 2^{1/5}$
b. $16^{-3/4}$
c. $\sqrt[3]{2}.\sqrt[4]{2} \sqrt[12]{32}$
d. $15\sqrt {6} + \sqrt {216}$
e. $ \frac {11^{5/2} }{ 11^{3/2}}$
f. $5^{3/2} 7^{3/2}$
g. $ \frac {\sqrt {162}}{ \sqrt {2}}$
h. $\frac {(8+\sqrt {3})}{(8-\sqrt {3})}$
Solution
a. $2^{1/4} \times 2^{1/5} = 2^{ \frac {1}{4} + \frac {1}{5}} = 2^{9/20}$
b. $16^{-3/4} = (2^4)^{-3/4} = \frac {1}{8}$
c. $\sqrt[3]{2}.\sqrt[4]{2}. \sqrt[12]{32} = 2^{1/3} . 2^{1/4} .2^{5/12} = 2^{ \frac {1}{3} + \frac {1}{4} + \frac {5}{12}}= 2$
d. $15\sqrt {6} + \sqrt {216} = 15\sqrt {6} + \sqrt {6^2 \times 6}= 15\sqrt {6} + 6\sqrt {6} =21 \sqrt {6}$
e. $ \frac {11^{5/2} }{ 11^{3/2}} = 11^ {\frac {5}{2} - \frac {3}{2}} = 11$
f. $5^{3/2} 7^{3/2} = (5 \times 7) ^{3/2} = (35)^{3/2}$
g. $ \frac {\sqrt {162}}{ \sqrt {2}} = \frac {9 \sqrt {2}} {\sqrt {2}}=9$
h. $\frac {(8+\sqrt {3})}{(8-\sqrt {3})} = \frac {(8+\sqrt {3})}{(8-\sqrt {3})} \times \frac {(8+\sqrt {3})}{(8+\sqrt {3})} $
$= \frac {1}{61} [64 + 3 + 16 \sqrt {3}]=\frac {1}{61} (67 + 16 \sqrt {3})$
Question 2
Simplify the below expression
a. $ \sqrt[4]{81} - 8 \sqrt[3]{216} + 15 \sqrt[5]{32} + \sqrt {225}$
b. $ 64^{-1/3} [64^{1/3} - 64^{2/3}]$
c. $ \frac {4}{216^{-2/3}} + \frac {1}{256^{-3/4}} + \frac {2}{243^{-1/5}}$
Solution
a.$ \sqrt[4]{81} - 8 \sqrt[3]{216} + 15 \sqrt[5]{32} + \sqrt {225}= \sqrt[4]{3^4} - 8 \sqrt[3]{6^3} + 15 \sqrt[5]{2^5} + \sqrt {25^2}$
$= 3 -48 + 30 + 25 =10$
b. $ 64^{-1/3} [64^{1/3} - 64^{2/3}]= (4^3)^{-1/3} [ (4^3)^{1/3} - (4^3)^{2/3}]= 4^{-1} [ 4 - 16]=-2$
c.$ \frac {4}{216^{-2/3}} + \frac {1}{256^{-3/4}} + \frac {2}{243^{-1/5}} = \frac {4}{(6^3)^{-2/3}} + \frac {1}{(4^4)^{-3/4}} + \frac {2}{(3^5)^{-1/5}}$
$= \frac {4}{6^{-2}} + \frac {1}{4^{-3}} + \frac {2}{3^{-1}}$
$ = 144 + 64 + 6 = 214$
Question 3
Find the value of p and q such that
$ \frac {5 + \sqrt {3}}{7 + 2 \sqrt {3}} = p + q \sqrt {3}$
Solution
$ \frac {5 + \sqrt {3}}{7 + 2 \sqrt {3}}$
$ = \frac {5 + \sqrt {3}}{7 + 2 \sqrt {3}} \times \frac {7 - 2 \sqrt {3}}{7 - 2 \sqrt {3}}$
$= \frac {1}{37} \times [35 -10 \sqrt {3} + 7 \sqrt {3} -6]$
$= \frac {1}{37} \times [29 -3 \sqrt {3}]$
$= \frac {29}{37} - \frac {3}{37} \sqrt {3}$
Now
$\frac {29}{37} - \frac {3}{37} \sqrt {3}= p + q \sqrt {3}$
so $p=\frac {29}{37}$ and $q= - \frac {3}{37}$
Question 4
If $ x = 1+\sqrt {3} $
and
$y= \frac {1}{x}$
Find the value of
i. $x^2 + y^2$
ii. $x^2 - y^2$
iii. $(x+y)^2$
iv. $x-y$
Solution
$ x = 1+\sqrt {3} $
$x^2 = (1+\sqrt {3})^2 = 2(2 + \sqrt {3})$
$y= \frac {1}{x} = \frac {1}{1+\sqrt {3}} = \frac {1}{2} (\sqrt {3} -1)$
$ y^2 = \frac {1}{2} (2 - \sqrt {3})$
Now,
i. $x^2 + y^2 = 2(2 + \sqrt {3}) + \frac {1}{2} (2 - \sqrt {3})$
$=\frac {1}{2} (10 + 3 \sqrt {3})$
ii. $x^2 - y^2 = 2(2 + \sqrt {3}) - \frac {1}{2} (2 - \sqrt {3})$
$=\frac {1}{2} (8 + 5 \sqrt {3})$
iii. $(x+y)^2 = (\frac {1 + 3 \sqrt {3}}{2})^2 = \frac {1}{4} [28 + 6 \sqrt {3}] =\frac {1}{2}( 14 + 3 \sqrt {3})$
iv. $x-y = \frac {3 + \sqrt {3}}{2}$
Question 5
Write the following in decimal form and say what kind of decimal expansion each has:
(i) $ \frac {19}{100}$
(ii) $ \frac {1}{3}$
(iii) $ \frac {11}{12}$
(iv) $ \frac {1}{13}$
(v) $ \frac {3}{13}$
(vi) $ \frac {111}{400}$
Solution
Question 6
Find the value of
$\frac {1}{1 + \sqrt 2} + \frac {1}{\sqrt 2 + \sqrt 3} + \frac {1}{\sqrt 3 + \sqrt 4} + ... + \frac {1}{\sqrt 8 + \sqrt 9}$
Solution
$\frac {1}{1 + \sqrt 2} + \frac {1}{\sqrt 2 + \sqrt 3} + \frac {1}{\sqrt 3 + \sqrt 4} + ... + \frac {1}{\sqrt 8 + \sqrt 9}$
$=\frac {1}{\sqrt 2 + 1 } + \frac {1}{\sqrt 3 + \sqrt 2} + \frac {1}{\sqrt 4 + \sqrt 3} + ... + \frac {1}{\sqrt 9 + \sqrt 8}$
$= \frac {1}{\sqrt 2 + 1} \times \frac {\sqrt 2 - 1}{\sqrt 2 - 1} + \frac {1}{\sqrt 3 + \sqrt 2} \times \frac {\sqrt 3 - \sqrt 2}{\sqrt 3 - \sqrt 2} + \frac {1}{\sqrt 4 + \sqrt 3} \times \frac {\sqrt 4 - \sqrt 3}{\sqrt 4 - \sqrt 3} + ... + \frac {1}{\sqrt 9 + \sqrt 8} \times \frac {\sqrt 9 - \sqrt 8}{\sqrt 9 - \sqrt 8}$
$= (\sqrt 2 - 1) + (\sqrt 3 - \sqrt 2) + (\sqrt 4 - \sqrt 3) ..... + (\sqrt 9 - \sqrt 8)= 2$
Question 7
Find the value of
$ \frac { \sqrt { 3 + 2 \sqrt 2} + \sqrt { 3 - 2 \sqrt 2}}{\sqrt {\sqrt 3 + 1}} - 2 \sqrt {\sqrt 3 - 1}$
Solution
$= \frac { \sqrt {(\sqrt 2 + 1)^2} + \sqrt {(\sqrt 2 -1)^2}}{ \sqrt {\sqrt 3 + 1}} - 2 \sqrt {\sqrt 3 - 1}$
$=\frac { \sqrt 2 + 1 + \sqrt 2 -1 }{ \sqrt {\sqrt 3 + 1}} - 2 \sqrt {\sqrt 3 - 1}$
$= \frac {2 \sqrt 2}{\sqrt {\sqrt 3 + 1}} - 2 \sqrt {\sqrt 3 - 1}$
$=\frac {2 \sqrt 2- 2 \sqrt 2}{\sqrt {\sqrt 3 + 1}}$
=0
Question 8
Find the value of
$\frac {1}{2 + \sqrt 3} + \frac {2}{\sqrt 5 - \sqrt 3} + \frac {1}{2 -\sqrt 5}$
Solution
$= 2 -\sqrt 3 + \sqrt 5 + \sqrt 3 - 2 + \sqrt 5=0$
Summary
This Class 9 Maths Problems for Number System with answers is prepared keeping in mind the latest syllabus of CBSE . This has been designed in a way to improve the academic performance of the students. If you find mistakes , please do provide the feedback on the mail.
link to this page by copying the following text
Also Read
Notes
NCERT Solutions
Assignments
Revision sheet
Please enable JavaScript to view the comments powered by Disqus.
Class 9 Maths
Class 9 Science