- Natural and Whole Number
- |
- Integers
- |
- Rational and Irrational Numbers
- |
- Real Numbers
- |
- Laws of exponents
- |
- What is Number Line
- |
- successive Magnification

Here we are trying to give the Class 9 Maths Worksheet for Number System. It tests the basic concepts and at the same time makes the student comfortable with the questions

Find the value of each of the Following

a. $16^{1/4}$

b. $625^{-3/4}$

c. $2 \sqrt {3} + 8 \sqrt {18}$

d. $15 \sqrt {6} + \sqrt {216}$

e. $ \frac {10^{5/2}}{10^{3/2}}$

f. $5^{3/2} \times 7^{3/2}$

g. $ \frac {\sqrt {162}}{ \sqrt {2}}$

h. $ \frac {(1+ \sqrt {2})}{(1- \sqrt {2})}$

a. $16^{1/4} = (2^4)^{1/4} = 2$

b. $625^{-3/4} = (5^4)^{-3/4}= 5^{-3} = \frac {1}{125}$

c. $2 \sqrt {3} + 8 \sqrt {18}= 2 \sqrt {3} + 24 \sqrt {2} = \sqrt {2}( \sqrt {6} + 24)$

d. $15 \sqrt {6} + \sqrt {216} =15 \sqrt {6} + \sqrt {6^2 \times 6}= 15 \sqrt {6} + 6 \sqrt {6}=21 \sqrt {6}$

e. $ \frac {10^{5/2}}{10^{3/2}} = 10^{\frac {5}{2} - \frac {3}{2}} = 10^1 = 10$

f. $5^{3/2} \times 7^{3/2} = (125)^{1/2} \times (343)^{1/2} = \sqrt {42875}$

g. $ \frac {\sqrt {162}}{ \sqrt {2}} = \frac {\sqrt {81 \times 2}}{ \sqrt {2}} =\frac { 9 \times \sqrt {2}}{\sqrt {2}}= 9$

h. $ \frac {(1+ \sqrt {2})}{(1- \sqrt {2})} = \frac {(1+ \sqrt {2})}{(1- \sqrt {2})} \times \frac {(1+ \sqrt {2})}{(1+ \sqrt {2})} = -( 1 + \sqrt {2})^2 = -(3+ 2\sqrt {2})$

Simplify the below expression

a. $ \frac {1+ \sqrt {2}}{1 - \sqrt {3}} + \frac {1- \sqrt {2}}{1 + \sqrt {3}}$

b.$ \frac {5+ \sqrt {2}}{5 - \sqrt {2}} + \frac {5- \sqrt {2}}{5 + \sqrt {2}}$

c. $ \frac {1}{1 - \sqrt {2} + \sqrt {3}}$

d. $ \frac {1}{\sqrt {3} - \sqrt {2}}$

a.$ \frac {1+ \sqrt {2}}{1 - \sqrt {3}} + \frac {1- \sqrt {2}}{1 + \sqrt {3}}$

=$ \frac {(1+ \sqrt {2})(1 + \sqrt {3}) + (1- \sqrt {2})(1 - \sqrt {3})}{ 1 -3}$

$= -\frac {1}{2} \times [1 + \sqrt {2} + \sqrt {3} + \sqrt {6} + 1 -\sqrt {2} + \sqrt {3} - \sqrt {6}]$

$=-\frac {1}{2} \times [2 + 2 \sqrt {3}]= -(1 + \sqrt {3})$

b.$ \frac {5+ \sqrt {2}}{5 - \sqrt {2}} + \frac {5- \sqrt {2}}{5 + \sqrt {2}}$

$= \frac {(5+ \sqrt {2})(5 + \sqrt {2}) + (5- \sqrt {2})(5- \sqrt {2})}{5-2}$

$= \frac {1}{3} \times [25 + 2 + 10 \sqrt {2} + 25 + 2 -10 \sqrt {2}]=18$

c. $ \frac {1}{1 - \sqrt {2} + \sqrt {3}}$

$= \frac {1}{1 - \sqrt {2} + \sqrt {3}} \times \frac {1 - \sqrt {2} - \sqrt {3}}{1 - \sqrt {2} - \sqrt {3}}$

$= \frac {1 - \sqrt {2} - \sqrt {3}}{ (1-\sqrt {2})^2 - 3}$

$= \frac {1 - \sqrt {2} - \sqrt {3}}{1 + 2 -2 \sqrt {2} -3}$

$=-\frac {1 - \sqrt {2} - \sqrt {3}}{2 \sqrt {2}}$

$=-\frac {1 - \sqrt {2} - \sqrt {3}}{2 \sqrt {2}} \times \frac {\sqrt {2}}{\sqrt {2}}$

$= -\frac {1}{4} \times [\sqrt {2} -2 - \sqrt {6}]$

d. $ \frac {1}{\sqrt {3} - \sqrt {2}}$

$= \frac {1}{\sqrt {3} - \sqrt {2}} \times \frac {\sqrt {3} + \sqrt {2}}{\sqrt {3} + \sqrt {2}}$

$= \sqrt {3} + \sqrt {2}$

Find the value of a and b such that

$ \frac {5 + \sqrt {3}}{7 + 2 \sqrt {3}} = a- b \sqrt {3}$

$ \frac {5 + \sqrt {3}}{7 + 2 \sqrt {3}}$

$ = \frac {5 + \sqrt {3}}{7 + 2 \sqrt {3}} \times \frac {7 - 2 \sqrt {3}}{7 - 2 \sqrt {3}}$

$= \frac {1}{37} \times [35 -10 \sqrt {3} + 7 \sqrt {3} -6]$

$= \frac {1}{37} \times [29 -3 \sqrt {3}]$

$= \frac {29}{37} - \frac {3}{37} \sqrt {3}$

Now

$\frac {29}{37} - \frac {3}{37} \sqrt {3}= a- b \sqrt {3}$

so $a=\frac {29}{37}$ and $b=\frac {3}{37}$

If $p = 1 + \sqrt {3}$

Find the value of

i. $p^2 + \frac {1}{p^2}$

ii. $p^4 + \frac {1}{p^4}$

$p = 1 + \sqrt {3}$

$p^2 = (1 + \sqrt {3})^2 = 1 + 3 + 2 \sqrt {3}= 2(2 + \sqrt {3})$

$p^4 = 4(2 + \sqrt {3})^2 = 4(4 + 3 + 4 \sqrt {3})= 4(7 + 4\sqrt {3})$

i. $p^2 + \frac {1}{p^2}$

$=2(2 + \sqrt {3}) + \frac {1}{2(2 + \sqrt {3})}$

$= 2(2 + \sqrt {3}) + \frac {1}{2(2 + \sqrt {3})} \times \frac {2 - \sqrt {3}}{2 - \sqrt {3}}$

$= 2(2 + \sqrt {3}) + \frac {2 - \sqrt {3}}{2}$

$= \frac {10 + 3 \sqrt {3}}{2}$

ii. $p^4 + \frac {1}{p^4}$

$=(p^2 + \frac {1}{p^2})^2 -2 $

$=(\frac {10 + 3 \sqrt {3}}{2})^2 -2$

$= \frac {100 + 27 + 60 \sqrt {3} -8}{4}$

$= \frac {119 + 60 \sqrt {3}}{4}$

(i) $\frac {2}{\sqrt {5}}$ is a rational number.

(ii) There are infinitely many integers between any two integers.

(iii) Number of rational numbers between 11 and 13 is finite.

(iv) There are numbers which cannot be written in the form

(v) The square of an irrational number is always rational.

(vi)$\frac {\sqrt {18}}{\sqrt {2}}$ is not a rational number as $ \sqrt {18}$ and $ \sqrt {2}$ are not integers.

5.

i. False

ii. false

iii. false

iv) True

v. False

vi. False

Given below are the links of some of the reference books for class 9 Math.

- Mathematics for Class 9 by R D Sharma One of the best book for studying class 9 level mathematics. It has lot of problems to be solved.
- Secondary School Mathematics for Class 9 by R S Aggarwal This is also as good as R.D. Sharma. Either this or the book by R.D. Sharma will do. I find book R.S. Aggarwal little bit more challenging than the one by R.D. Sharma.
- Pearson IIT Foundation Series - Maths - Class 9 Buy this book if you want to challenge yourself further and want to prepare for JEE foundation.
- Pearson IIT Foundation Physics, Chemistry & Maths combo for Class 9 Only buy if you are prepared to study extra topics and want to take your studies a step further. You might need help to understand topics in these books.

You can use above books for extra knowledge and practicing different questions.

Class 9 Maths Class 9 Science

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using feedback button or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.