In this page we have *Worksheet for Factorization Class 8 Chapter 14 CBSE Maths* .This worksheet has all format of questions covering the whole chapter. Questions format is Multiple choice questions, Match the column, Fill in the blank, short answer type. Hope you like them and do not forget to like , social share
and comment at the end of the page.

(a) x(1 - b) - y(1 - b)

(b) 9r(z + 1) + 3r(z+ 1)

(c) p

(d) x² + x y + 8x + 8y

(e) 3(x + y) - 9(x + y)

(f) l(3m – 7n) - n(3m – 7n)

(g) (2m – 5) (3a - 2b) - (2m – 5) (2b – 3a)

(h) x(1 + y) + (7 + 7y)

(i) (6xy + 3x) + (2y + 1)

(j) x(y – z)

(k) z – 7 + 7 x y – x y z

(a) x(1 - b) - y(1 - b) =(1-b)(x-y)

(b) 9r(z + 1) + 3r(z+ 1)=(z+1)(9r+3r)=12r(z+1)

(c) p^{2}+ q^{2}+ 5a(p^{2}+ q^{2})=1(p^{2}+ q^{2}) + 5a(p^{2}+ q^{2})=(1+5a)(p^{2}+ q^{2})

(d) x² + x y + 8x + 8y=x(x+y) + 8(x+y)=(x+8)(x+y)

(e) 3(x + y) - 9(x + y)^{2}=3(x+y)[1-3(x+y)]=3(x+y)(1-3x-3y)

(f) l(3m – 7n) - n(3m – 7n)=(l-n)(3m-7n)

(g) (2m – 5) (3a - 2b) - (2m – 5) (2b – 3a)=(2m-5)[3a-2b -(2b-3a)]=6(2m-5)a

(h) x(1 + y) + (7 + 7y)=(x+7)(1+y)

(i) (6xy + 3x) + (2y + 1)=(3x+1)(2y+1)

(j) x(y – z)^{2} – a(z - y)^{3}=(y-z)^{2}[x-a(z-y)]=(y-z)^{2}(x-az+ay)

(k) z – 7 + 7 x y – x y z=1( z-7) -xy(z-7)=(1-xy)(z-7)

Work out the following divisions.

(i) (11x – 121) ÷ 11

(ii) (15x – 25) ÷ (3x – 5)

(iii) 10y(9y + 21) ÷ 2(3y + 7)

(iv) 9p²q² (3z – 12) ÷ 27pq(z – 4)

(i) (11x – 121) ÷ 11= 11(x-11)÷ 11=(x-11)

(ii) (15x – 25) ÷ (3x – 5)=5(3x-5) ÷ (3x – 5)= 5

(iii) 9p²q² (3z – 12) ÷ 27pq(z – 4)= pq

Factorize the following expressions.

(i) z² + 6z + 8

(ii) z² – 10z + 21

(iii) z² + 6z – 16

(i) z² + 6z + 8 = z² + 2z + 4z+8 = z(z+2) + 4(z+2)=(z+4)z+2)

(ii) z² – 10z + 21 = z² -7z -3z+21= z(z-7) -3(z-7)=(z-3)(z-7)

(iii) z² + 6z – 16=z² + 8z -2z- 16=z(z+8)-2(z+8)=(z-2)(z+8)

(i) $x^2 + 4x + 3$ is factorised as (x+1)(x+3)

(ii)$x^2 + (a + b)x + ab = (a + b) (x + ab)$

(iii) h is a factor of $2\pi (h + r)$.

(iv) Factors of $(96-4x -x^2)$ is (x+12)(8-x)

(v)Common factor of $17abc$, $34ab^2$, $51a^2b$ is 17ab

(i) True

(ii) false

(iii) False

(iv) True

(v) True

(i) $-x + x^3$ is factorised as ______

(ii)$\frac {x^2 + 5xy-24y^2}{x+ 8y}$ = __________

(iii) Factorised form of (x-10)(x+7) + 16 is _______

(iv) Factorised form of 23xy – 46x + 54y – 108 is _____

(v)Factorized form of $a^{12}x^{4} -a^{4}x^{12}$ is ____________

(i) x(x-1)(x+1)

(ii) (x- 3y)

(iii) (x-9)(x+6)

(iv) (23x + 54) (y – 2)

(v) $a^4x^4(a^4 + x^4)(a^2 + x^2)(a+x)(a-x)$

The radius of a circle is 7ab – 7bc – 14a cm, then circumference of the circle is ( Given $\pi =\frac {22}{7}$)

(a) 22(ab -bc-2a)

(b) 44(ab -bc-2a)

(c)(ab -bc-2a)

(d) None of these

Factorised form of $x^2 -(p-5)x -5p$ is

(a) (x-5)(x-p)

(b) (x+5)(x+p)

(c)(x-p)(x+5)

(d) (x+p)(x-5)

Factorised form of $r^2 – 10r + 21$ is

(a) (r - 7) (r - 3)

(b) (r -7) (r +3)

(c)(r +1) (r - 4)

(d) (r -1) (r - 4)

The expression $\frac {6x^2 -17x +12}{3x-4}$ is

(a) (2x+3)

(b) (3x+2)

(c)(2x -3)

(d) (3x-2)

(6) (b)

(7) (c)

(8) (a)

(9) (c)

(p) => (iii)

(q) => (iv)

(r) => (ii)

(s) => (i)

This factorisation class 8 worksheet with answers is prepared keeping in mind the latest syllabus of CBSE . This has been designed in a way to improve the academic performance of the students. If you find mistakes , please do provide the feedback on the mail.

Download Worksheet for Factorization as pdf

**Notes**-
**Worksheets** -
**Ncert Solutions**

Class 8 Maths Class 8 Science