physicscatalyst.com logo




Ohm's Law & resistance<





Ohm's Law and Resistance


  • Ohm's law is the relation between the potential difference applied to the ends of the conductor and current flowing through the conductor.This law was expressed by George Simon Ohm in 1826
  • Statement of Ohm's Law
    'if the physical state of the conductor (Temperature and mechanical strain etc.) remains unchanged ,then current flowing through a conductor is always directly proportional to the potential difference across the two ends of the conductor
    Mathematically
    V α I
    or
    V=IR                    (6)
    Where constant of proportionality R is called the electric resistance or simply resistance of the conductor
  • Value of resistance depends upon the nature ,dimension and physically dimensions of the conductor
  • Ohm's Law can be deducted using drift velocity relation as given in equation -3 .Thus from the equation
    vd=(eE/m)τ
    but Now E=V/l
    Therefore
    vd=(eV/ml)τ
    Also I=neAvd
    Substituting the value of vd in I relation
    I=(ne2Aτ/ml) V                    (7)
    or V/I=(ml/ne2Aτ)=R a constant for a given conductor
    Thus
    V=IR
    Mathematical expression of Ohm's Law
    From Ohm's Law
    V=IR or R=V/I                    (8)
    Thus electric resistance is the ratio of potential difference across the two ends of conductor and amount of current flowing through the conductor
  • electric resistance of a conductor is the obstruction offered by the conductor to the flow of the current through it.
  • SI unit of resistance is ohm (Ω) where
    1 Ohm=1 volt/1 Ampere
    or 1Ω=1VA-1
  • Dimension of resistance is [ML2T-3A-2]



Current Voltage relations & Limitations


  • We know that current through any electrical device such as resistors depends on potential difference between the terminals
  • Devices obeying ohm's law follow a linear relationship between current following and potential applied where current is directly proportional to voltage applied .Graphical relation between V and I is shown below in figure


    Current voltage relation of resistor obeying ohm's law

  • Graph for a resistor obeying ohm's law is a straight line through the origin having some finite slope
  • There are many electrical devices that does not obey the ohm's law and current may depends on voltage in more complicated ways.Such devices are called non-ohmic devices for examples vacuum tubes,semiconductor diodes ,transistors etc
  • Consider the case of a semi conductor junction diode which are used to convert alternating current to direct current and are used to perform variety of logic functions is a non=ohmic device
  • Graphical voltage relation for a diode is shown below in the figure

    Current voltage relation of semiconducting diode

  • Figure clearly shows a non linear dependency of current on voltage and diode clearly does not follow the ohm's w
  • When a device does not follow obey ohm's law,it has non linear voltage -current relation and the quantity V/I is no longer a constant however ratio is still known as resistance which now varies with current
  • In such cases we define a quantity dV/dI known as dynamic resistance which expresses the relation between small change in current and resulting change in voltage
  • Thus for non-ohmic electrical devices resistance is not constant for different values of V and I


link to this page by copying the following text





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology





Note to our visitors :-

Thanks for visiting our website.
DISCLOSURE: THIS PAGE MAY CONTAIN AFFILIATE LINKS, MEANING I GET A COMMISSION IF YOU DECIDE TO MAKE A PURCHASE THROUGH MY LINKS, AT NO COST TO YOU. PLEASE READ MY DISCLOSURE FOR MORE INFO.