physicscatalyst.com logo




Spherical Capacitor Derivation: Formulas & Earthed Inner Sphere Cases





Spherical capacitor

  • A spherical capacitor consists of a solid or hollow spherical conductor of radius a , surrounded by another hollow concentric spherical of radius b shown below in figure 5
    Spherical capacitor

  • Let +Q be the charge given to the inner sphere and -Q be the charge given to the outer sphere.
  • The field at any point between conductors is same as that of point charge Q at the origin and charge on outer shell does not contribute to the field inside it.
  • Thus electric field between conductors is $$E=\frac{Q}{2\pi \epsilon _{0}r^{2}}$$
  • Potential difference between two conductors is
    $V=V_a -V_b$
    $=- \int E.dr $
    where limits of integration goes from a to b.
    On integrating we get potential difference between to conductors as
    $$V=\frac{Q(b-a)}{4\pi \epsilon _{0}ba}$$
  • Now , capacitance of spherical conductor is
    $C= \frac {Q}{V} $
    or,
    $C=\frac{4\pi \epsilon _{0}ba}{(b-a)}$ ----(1)
  • again if radius of outer conductor approaches to infinity then from equation 6 we have
    $C=4 \pi \epsilon _{0} a$ ----(2)
  • Equation 2 gives the capacitance of single isolated sphere of radius a.
  • Thus capacitance of isolated spherical conductor is proportional to its radius.


Spherical capacitor when inner sphere is earthed

  • If a positive charge of Q coulombs is given to the outer sphere B, it will distribute itself over both its inner and outer surfaces.
  • Let the charges of $Q_1$ and $Q_2$ coulombs be at the inner and outer surfaces respectively of sphere B where $Q = Q_1 +Q_2$,
  • The charge + $Q_1$ on the inner surface of outer sphere B will induce a charge of -$Q_1$ coulombs on the outer surface of inner sphere A and + $Q_1$ coulombs on the inner surface of sphere A, which will go to earth.
  • Now there are two capacitors connected in parallel.
    (i) One capacitor consists outer surface of sphere B and earth having capacitance $C_1 = 4 \pi \epsilon _0 b$ farads
    (ii) Second capacitor consisting of inner surface of outer sphere B and the outer surface of inner sphere A having capacitance
    $C_2=\frac{4\pi \epsilon _{0}ba}{(b-a)}$
  • Final Capacitance
    $C=C_1+C_2=4 \pi \epsilon _0 b + \frac{4\pi \epsilon _{0}ba}{(b-a)}= \frac{4\pi \epsilon _{0}b^2}{(b-a)}$

Handwritten Short Notes on Spherical Capacitor

Short revision notes on Spherical Conductor
Handwritten short notes on Spherical Conductor with key concepts, equations, and diagrams, ideal for physics students and exam preparation.








Latest Updates
Sound Class 8 Science Quiz

Limits Class 11 MCQ

Circles in Conic Sections Class 11 MCQ

Plant Kingdom free NEET mock tests

The Living World free NEET mock tests