physicscatalyst.com logo




Self Inductance




Self Inductance

  • Consider the figure given below


    Self Inductance

  • When we establish a current through an inductor or coil, it generates a magnetic field and this result in a magnetic flux passing through the coil as shown in figure 1(a).
  • If we vary the amount of current flowing in the coil with time, the magnetic flux associated with the coil also changes and an emf ξ is induced in the coil.
  • According to the Lenz's law, the direction of induced emf is such that it opposes its cause i.e. it opposes the change in current or magnetic flux.
  • This phenomenon of production of opposing induced emf in inductor or coil itself due to time varying current in the coil is known as self induction.
  • If I is the amount of current flowing in the coil at any instant then emf induced in the coil is directly proportional to the change in current i.e.


    where L is a constant known as coefficient of self induction.
  • If (-dI/dt)=1 then ξ=L
    Hence the coefficient of self induction of a inductor or coil is numerically equal to the emf induced in the coil when rate of change of current in the coil is unity.
  • Now from the faraday's and Lenz's laws induced emf is


    comparing equation 1 and 2 we have,

    or Φ=LI
  • Again for I=1, Φ=L
    hence the coefficient of self induction of coil is also numerically equal to the magnetic flux linked with the inductor carrying a current of one ampere
  • If the coil has N number of turns then total flux through the coil is
    Φtot=NΦ
    where Φ is the flux through single turn of the coil .So we have,
    Φtot=LI
    or L=NΦ/I
    for a coil of N turns
  • In the figure given below consider the inductor to be the part of a circuit and current flowing in the inductor from left to right


    Inductor as a part of circuit

  • Now when a inductor is used in a circuit, we can use Kirchhoff’s loop rule and this emf(Self induced emf) can be treated as if it is a potential drop with point A at higher potential and B at lower potential when current flows from a to b as shown in the figure
  • We thus have
    Vab=LdI/dt


Self induction of a long solenoid

  • Consider a long solenoid of length l, area of cross-section A and having N closely wound turns.
  • If I is the amount of current flowing through the solenoid them magnetic field B inside the solenoid is given by,


  • Magnetic flux through each turn of the solenoid is,











Class 12 Maths Class 12 Physics





Note to our visitors :-

Thanks for visiting our website.
DISCLOSURE: THIS PAGE MAY CONTAIN AFFILIATE LINKS, MEANING I GET A COMMISSION IF YOU DECIDE TO MAKE A PURCHASE THROUGH MY LINKS, AT NO COST TO YOU. PLEASE READ MY DISCLOSURE FOR MORE INFO.