Self Inductance

Self Inductance

  • Consider the figure given below

    Self Inductance

  • When we establish a current through an inductor or coil, it generates a magnetic field and this result in a magnetic flux passing through the coil as shown in figure 1(a).
  • If we vary the amount of current flowing in the coil with time, the magnetic flux associated with the coil also changes and an emf ξ is induced in the coil.
  • According to the Lenz's law, the direction of induced emf is such that it opposes its cause i.e. it opposes the change in current or magnetic flux.
  • This phenomenon of production of opposing induced emf in inductor or coil itself due to time varying current in the coil is known as self induction.
  • If I is the amount of current flowing in the coil at any instant then emf induced in the coil is directly proportional to the change in current i.e.

    where L is a constant known as coefficient of self induction.
  • If (-dI/dt)=1 then ξ=L
    Hence the coefficient of self induction of a inductor or coil is numerically equal to the emf induced in the coil when rate of change of current in the coil is unity.
  • Now from the faraday's and Lenz's laws induced emf is

    comparing equation 1 and 2 we have,

    or Φ=LI
  • Again for I=1, Φ=L
    hence the coefficient of self induction of coil is also numerically equal to the magnetic flux linked with the inductor carrying a current of one ampere
  • If the coil has N number of turns then total flux through the coil is
    where Φ is the flux through single turn of the coil .So we have,
    or L=NΦ/I
    for a coil of N turns
  • In the figure given below consider the inductor to be the part of a circuit and current flowing in the inductor from left to right

    Inductor as a part of circuit

  • Now when a inductor is used in a circuit, we can use Kirchhoff�s loop rule and this emf(Self induced emf) can be treated as if it is a potential drop with point A at higher potential and B at lower potential when current flows from a to b as shown in the figure
  • We thus have

Self induction of a long solenoid

  • Consider a long solenoid of length l, area of cross-section A and having N closely wound turns.
  • If I is the amount of current flowing through the solenoid them magnetic field B inside the solenoid is given by,

  • Magnetic flux through each turn of the solenoid is,

Latest Updates
Synthetic Fibres and Plastics Class 8 Practice questions

Class 8 science chapter 5 extra questions and Answers

Mass Calculator

3 Fraction calculator

Garbage in Garbage out Extra Questions7