## Sine Function

y=f(x)= Sin(x)

domain
: It is defined for all real values of x

range : -1 ≤ y ≤ 1

Period:2π

It is a odd function

__Graph of sin(x) function__
**More Graphs on sine function**
for y=f(x)=2 sin (x) and y=f(x)=3 sin (x)

We can see that range get increased in the similar way

for y=f(x)=sin (2x)

We can see that range remains but graph get shrink

## Cosine Function

y=f(x)= cos(x)

Domain : It is defined for all real values of x

Range : -1 ≤ y ≤ 1

Period:2π

It is even function

__Graph of cos(x) function__
**More Graphs on contains function**
for y=f(x)=2 cos (x) and y=f(x)=3 cos (x)

We can see that range get increased in the similar way

for y=f(x)=cos (2x)

We can see that range remains but graph get shrink

## Tangent Function

y=f(x)=tan(x)

Domain : It is defined for all real values of x except x ≠(2n + 1)(π/2) where n is any

Range : All the real numbers

Period:π

It is a odd function

__Graph of tan(x) function__
## Cotangent Function

y=f(x)=cot(x)

Domain : It is defined for all real values of x except x ≠nπ, where n is any integer

Range : All the real numbers

Period:π

It is a odd function

__Graph of cot(x) function__
## Secant Function

y=f(x)=sec(x)

Domain : It is defined for all real values of x except x ≠(2n + 1)(π/2) where n is any integer

Range : (-∞,-1] ∪ [1,∞)

Period:2π

It is even function

__Graph of sec(x) function__
## Cosecant Function

y=f(x)=cosec(x)

Domain :It is defined for all real values of x except x ≠nπ, where n is any integer

Range : (-∞,-1] ∪ [1,∞)

Period:2π

It is odd function

__Graph of cosec(x) function__
We can write the

range for the trigonometric functions in below summary table

**Also Read**

**Notes**
- Trigonometry
- Trigonometric functions
- Domain,Range And Graph of trigonometric functions
- Trigonometric Identities
- Trigonometric equations
- Values of Sin 15, cos 15 ,tan 15 ,sin 75, cos 75 ,tan 75
- values of Sin 18, cos 18, tan 18, sin 36,cos 36, Sin 54, cos 72

**Questions**