Processing math: 100%
physicscatalyst.com logo




Trigonometric Functions questions





Question 1.
Find the value of 3cosec200sec200

Answer

3cosec200sec200
=3sin201cos20
=3cos20sin20sin20cos20
=4(3/2)cos20(1/2)sin202sin20cos20
=4sin60cos20cos60sin20sin40
=4sin(60020)sin40
= 4


Question 2.
Find the value of (1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)

Answer

(1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)
=(1+cosπ8)(1+cos3π8)(1+cos(π3π8))(1+cos(ππ8))
=(1+cosπ8)(1+cos3π8)(1cosπ8)(1cos3π8)
=(1cos2π8)(1cos23π8)
=sin2π8sin23π8
Now
cos2A=cos2Asin2A=12sin2A
Therefore
=14(1cosπ4)(1cos3π4)
=14(1cosπ4)(1cos(ππ4))
=14(1cosπ4)(1+cosπ4)
=14(1cos2π4)
=18


Question 3.
If acosθ+bsinθ=m and asinθbcosθ=n, then show that a2+b2=m2+n2

Answer

acosθ+bsinθ=m
Squaring both sides
a2cos2θ+b2sin2θ+2absinθcosθ=m2 -(1)
asinθbcosθ=n
Squaring both the sides
a2sin2θ+b2cos2θ2absinθcosθ=n2 --(2)
Adding (1) and (2)
a2(cos2θ+sin2θ)+b2(sin2θ+cos2θ)=m2+n2
or
a2+b2=m2+n2


Question 4.
if tan(α)=mm+1 and tan(β)=12m+1, Prove that α+β=π4

Answer

tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)
Substituting the values, we have
tan(α+β)=1
tan(α+β)=tan(π4)
α+β=π4


Question 5.
Prove that 5cosθ+3cos(θ+π3)+3 lies between -4 and 10

Answer

5cosθ+3cos(θ+π3)+3
=5cosθ+3cosθcosπ33sinθsinπ3+3
=12[13cosθ33sinθ]+3
Let 13=rcosα and 33=rsinα
r2=132+(33)2=196
r=14
So equation becomes
=12[14cos(θ+α)]+3
=7cos(θ+α)+3
Now
1cos(θ+α)1
77cos(θ+α)7
47cos(θ+α)+314
Hence Proved


Question 6.
if π2xπ and tan x =-4/3 , Find the value of sin (x/2),cos (x/2),tan (x/2)

Answer

π2xπ
π4x/2π2
So, x/2 lies in First quadrant
Now As x is in second quadrant,cos x will be negative
cosx=11+tan2x=35
Now Since x/2 lies in First quadrant, sin (x/2),cos (x/2),tan (x/2) will be positive
cosx2=1+cosx2=15
sinx2=1cosx2=25
tanx2=1cosx1+cosx=2


Question 7.
Prove that a. sin120sin480sin540=18
b. sin200sin400sin600sin800=316

Question 8.
If acos(2θ)+bsin(2θ)=c has α and β as its roots, then prove that
tan(α)+tan(β)=2ba+c

Answer

Use the identities
cos(2θ)=1tan2θ1+tan2θ
and
sin(2θ)=2tanθ1+tan2θ
Substituting these values,creating quadratic in tan,then the sum of roots i.e $$\tan (\alpha) + \tan (\beta)$ can be easily derived


Question 9.
Prove that cot7120=2+3+4+6

Answer

cot7120
=cos7120sin7120=cos7120cos7120sin7120cos7120
=2cos271202sin7120cos7120=1+cos150sin150
=1+cos(6045)sin(6045)
Now applying cos(A-B) and sin (A-B) formula and substituting the known values of 60 and 45 angles, we get
=2+3+4+6


Question 10.
if α and β are the solutions of sin2x+asinx+b=0 as well as that of cos2x+ccos(x)+d=0,then prove that
sin(α+β)=2aca2+c2

Answer

Now
sinα+sinβ=a -(1)
cosα+cosβ=c -(2)
For (1)
2sin(α+β2)cos(αβ2)=a
for (2)
2cos(α+β2)cos(αβ2)=c
Dividing both
tan(α+β2)=ac
Now
sin(α+β)=2tan(α+β2)2+tan2(α+β2)=2aca2+c2


Question 11.
If α and β are the solutions of the equation atanθ+bsecθ=c,
then show that tan(α+β)=2aca2c2

Answer

atanθ+bsecθ=c
atanθc=bsecθ
squaring both the sides
(atanθc)2=b2sec2θ
(atanθc)2=b2(1+tan2θ)
Rearranging
(a2b2)tan2θ2actanθ+c2b2=0
Now α and β are solutions, so
tanα+tanβ=2aca2b2
tanαtanβ=c2b2a2b2
Now
tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)
Substituting the values, we have
tan(α+β)=2aca2cc2


Question 12.
Show that
sec2θtanθsec2θ+tanθ lies between 1/3 and 3

Question 13.
In any ΔABC , if a2,b2,c2 are in A.P,Prove that cot A,cot B and Cot C are in A.P

Question 14.
Prove that
2cos(x)cos(3x)cos(5x)=16cos3(x)sin2(x)

Question 15.
Determine the period and Graph of y=sin(2x)

Question 16.
Determine the period and Graph of y=2cos(x)+3

Question 17.
Determine the period and Graph of y=12cos(x)

Question 18.
Sketch the Graph of y=3sin(x)

Question 19.
Prove that
cos(7x)+cos(5x)sin(7x)sin(5x)=cot(x)

Question 20.
Find the value of tan(13π10)


Also Read







Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ