√3cosec200−sec200
=√3sin20−1cos20
=√3cos20−sin20sin20cos20
=4(√3/2)cos20−(1/2)sin202sin20cos20
=4sin60cos20−cos60sin20sin40
=4sin(60020)sin40
= 4
(1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)
=(1+cosπ8)(1+cos3π8)(1+cos(π−3π8))(1+cos(π−π8))
=(1+cosπ8)(1+cos3π8)(1−cosπ8)(1−cos3π8)
=(1−cos2π8)(1−cos23π8)
=sin2π8sin23π8
Now
cos2A=cos2A−sin2A=1−2sin2A
Therefore
=14(1−cosπ4)(1−cos3π4)
=14(1−cosπ4)(1−cos(π−π4))
=14(1−cosπ4)(1+cosπ4)
=14(1−cos2π4)
=18
acosθ+bsinθ=m
Squaring both sides
a2cos2θ+b2sin2θ+2absinθcosθ=m2 -(1)
asinθ−bcosθ=n
Squaring both the sides
a2sin2θ+b2cos2θ−2absinθcosθ=n2 --(2)
Adding (1) and (2)
a2(cos2θ+sin2θ)+b2(sin2θ+cos2θ)=m2+n2
or
a2+b2=m2+n2
tan(α+β)=tan(α)+tan(β)1−tan(α)tan(β)
Substituting the values, we have
tan(α+β)=1
tan(α+β)=tan(π4)
α+β=π4
5cosθ+3cos(θ+π3)+3
=5cosθ+3cosθcosπ3−3sinθsinπ3+3
=12[13cosθ−3√3sinθ]+3
Let 13=rcosα and 3√3=rsinα
r2=132+(3√3)2=196
r=14
So equation becomes
=12[14cos(θ+α)]+3
=7cos(θ+α)+3
Now
−1≤cos(θ+α)≤1
−7≤7cos(θ+α)≤7
−4≤7cos(θ+α)+3≤14
Hence Proved
π2≤x≤π
π4≤x/2≤π2
So, x/2 lies in First quadrant
Now As x is in second quadrant,cos x will be negative
cosx=−1√1+tan2x=−35
Now Since x/2 lies in First quadrant, sin (x/2),cos (x/2),tan (x/2) will be positive
cosx2=√1+cosx2=1√5
sinx2=√1−cosx2=2√5
tanx2=√1−cosx1+cosx=2
Use the identities
cos(2θ)=1−tan2θ1+tan2θ
and
sin(2θ)=2tanθ1+tan2θ
Substituting these values,creating quadratic in tan,then the sum of roots i.e $$\tan (\alpha) + \tan (\beta)$ can be easily derived
cot7120
=cos7120sin7120=cos7120cos7120sin7120cos7120
=2cos271202sin7120cos7120=1+cos150sin150
=1+cos(60−45)sin(60−45)
Now applying cos(A-B) and sin (A-B) formula and substituting the known values of 60 and 45 angles, we get
=√2+√3+√4+√6
Now
sinα+sinβ=−a -(1)
cosα+cosβ=−c -(2)
For (1)
2sin(α+β2)cos(α−β2)=−a
for (2)
2cos(α+β2)cos(α−β2)=−c
Dividing both
tan(α+β2)=ac
Now
sin(α+β)=2tan(α+β2)2+tan2(α+β2)=2aca2+c2
atanθ+bsecθ=c
atanθ−c=−bsecθ
squaring both the sides
(atanθc)2=b2sec2θ
(atanθc)2=b2(1+tan2θ)
Rearranging
(a2b2)tan2θ2actanθ+c2b2=0
Now α and β are solutions, so
tanα+tanβ=2aca2−b2
tanαtanβ=c2−b2a2−b2
Now
tan(α+β)=tan(α)+tan(β)1−tan(α)tan(β)
Substituting the values, we have
tan(α+β)=2aca2cc2