Processing math: 100%
physicscatalyst.com logo




Trigonometric equations questions





Question 1.
Find the Principal solutions of the below trigonometric equations
a. sin(x)=32
b. cos(x)=12
c. tan x=-1

Answer

The principle solutions lies in the range 0 ≤ x ≤ 2π. We can principle solution using the below method
i. Find the value of the angle using the positive value.
ii Then remember these below identities to find the principle values
sin(πx)=sinx
sin(π+x)=\sinx
sin(2πx)=\sinx
cos(πx)=cosx
cos(π+x)=cosx
cos(2πx)=cosx
tan(πx)=tanx
tan(π+x)=tanx
tan(2πx)=tanx

(a) sin(x)=32
sin(x)=sin(π/3)
Now sin(ππ/3)=sinπ/3
or sin(2π/3)=32
So principle solutions are π/3, 2π/3

(b) cos(x)=12
cos(x)=cos(π/4)
Now cos(ππ/4)=cos(π/4)
or cos(3π/4)=12

Also cos(π+π/4)=cos(π/4)
or cos(5π/4)=12

So principle solutions are 3π/4, 5π/4

(c) tanx =-1
tan(x)=tan(π/4)
Now tan(ππ/4)=tan(π/4)
or tan(3π/4)=1
Also tan(2ππ/4)=tanπ/4
or tan(7π/4)=1

So principle solutions are 3π/4, 7π/4


Find the general solution of the equation
Question 2.
sin(θ2)=1

Answer

sin(θ2)=1
sin(θ2)=sin(π2)
\frac {\theta }{2= n \pi + (-1)^n ( -\frac {\pi}{2}) ,n \in Z
θ=2nπ+(1)n+1π,nZ


Question 3.
cos(3θ)=12

Answer

cos(3θ)=12
cos(3θ)=cos(2pi3)
3θ=2nπ±2pi3,nZ
θ=2nπ3±2pi9,nZ


Question 4.
5cos2(θ)+7sin2(θ)6=0

Answer

5cos2(θ)+7sin2(θ)6=0
5(1sin2(θ))+7sin2(θ)6=0
2sin2(θ)=1
sin2(θ)=12
sin2(θ)=sin2(π4)
θ=nπ±π4,nZ


Question 5.
sin2(x)=34

Answer

sin2(x)=34
sin2(x)=sin2π3
x=nπ±π3,nZ


Question 6.
3cos(θ)+sin(θ)=2

Answer

This is of the form
acos(θ)+bsin(θ)=c
So, a=3, b=1 and c=2
3=rcos(α)
1=rsin(α)
r=12+(3)2=2
tan(α)=13
α=π6
so, equation becomes
3cos(θ)+sin(θ)=2
rcos(α)cos(θ)+rcos(α)sin(θ)=2
rcos(θα)=2
2cos(θπ6)=2
cos(θπ6)=12
cos(θπ6)=cosπ4
θπ6=2nπ±π4
θ=2nπ±π4+π6
θ=2nπ+π4+π6 or θ=2nππ4+π6
θ=2nπ+5π4 or θ=2nππ12


Question 7.
Find the general solution of the equation
(31)cos(θ)+(3+1)sin(θ)=2

Answer

This is of the form
acos(θ)+bsin(θ)=c
So, a=31, b=3+1 and c=2
31=rcos(α)
3+1=rsin(α)
r=(31)2+(3+1)2=22
tan(α)=313+1
tan(α)=tan(π4π6)\alpha = \frac {\pi}{12}so,equationbecomes(\sqrt 3 - 1) \cos (\theta) + (\sqrt 3 + 1) \sin (\theta) = 2 r \cos (\alpha) \cos (\theta) + r \cos (\alpha) \sin (\theta) = 2r \cos( \theta - \alpha)= 22\sqrt 2 \cos (\theta - \frac {\pi}{12})=\sqrt 2\cos (\theta - \frac {\pi}{12}) = \frac {1}{\sqrt 2}\cos (\theta - \frac {\pi}{12}) = \cos (\frac {\pi}{4})\theta - \frac {\pi}{12}= 2n \pi \pm \frac {\pi}{4} \theta = 2n \pi \pm \frac {\pi}{4} + \frac {\pi}{12}$


Question 8.
Solve sin (2x) - sin (4x) + sin (6x) = 0.

Answer

sin (2x) - sin (4x) + sin (6x) = 0.
or 2 sin (4x) cos(2x) - sin (4x) = 0
i.e. sin (4x)(2 cos(2x) - 1) = 0
Therefore sin (4x) = 0 or 2cos (2x) -1=0
i.e.
sin(4x)= 0 or cos(2x) =1/2
sin(4x)= 0 or cos(2x)=cos(π3)
Hence
4x=nπ or 2x=2nπ±π3
or
x=nπ4 or x=nπ±π6 for nZ


Question 9.
4cos2(x)sin(x)2sin2(x)=3sin(x)

Answer

x= n \pi + (-1)^{n+1} (\frac {3 \pi}{10})$


Question 10.
Determine all the values of b for which the equation cos4(x)(b+2)cos2(x)(b+3)=0 possesses solution . Find the solutions also

Answer

3a2
x=nπ±cos1a+3


Question 11.
Solve the below equation
tan(5x)=cot(2x)

Answer

tan(5x)=cot(2x)
tan(5x)=tan(π22x)
or
5x=nπ+π22x
x=17(nπ+π2)


Question 12.
Solve the below equation
sec(4x)sec(2x)=2

Answer

x=(2n+1)π10




Also Read







Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ