The principle solutions lies in the range 0 ≤ x ≤ 2π. We can principle solution using the below method
i. Find the value of the angle using the positive value.
ii Then remember these below identities to find the principle values
sin(π−x)=sinx
sin(π+x)=−\sinx
sin(2π−x)=−\sinx
cos(π−x)=−cosx
cos(π+x)=−cosx
cos(2π−x)=cosx
tan(π−x)=−tanx
tan(π+x)=tanx
tan(2π−x)=−tanx
(a) sin(x)=√32
sin(x)=sin(π/3)
Now sin(π−π/3)=sinπ/3
or sin(2π/3)=√32
So principle solutions are π/3, 2π/3
(b) cos(x)=−1√2
cos(x)=−cos(π/4)
Now cos(π−π/4)=−cos(π/4)
or cos(3π/4)=−1√2
Also cos(π+π/4)=−cos(π/4)
or cos(5π/4)=−1√2
So principle solutions are 3π/4, 5π/4
(c) tanx =-1
tan(x)=−tan(π/4)
Now tan(π−π/4)=−tan(π/4)
or tan(3π/4)=−1
Also tan(2π−π/4)=−tanπ/4
or tan(7π/4)=−1
So principle solutions are 3π/4, 7π/4
sin(θ2)=−1
sin(θ2)=sin(−π2)
\frac {\theta }{2= n \pi + (-1)^n ( -\frac {\pi}{2}) ,n \in Z
θ=2nπ+(−1)n+1π,n∈Z
cos(3θ)=−12
cos(3θ)=cos(2pi3)
3θ=2nπ±2pi3,n∈Z
θ=2nπ3±2pi9,n∈Z
5cos2(θ)+7sin2(θ)−6=0
5(1−sin2(θ))+7sin2(θ)−6=0
2sin2(θ)=1
sin2(θ)=12
sin2(θ)=sin2(π4)
θ=nπ±π4,n∈Z
sin2(x)=34
sin2(x)=sin2π3
x=nπ±π3,n∈Z
This is of the form
acos(θ)+bsin(θ)=c
So, a=√3, b=1 and c=√2
√3=rcos(α)
1=rsin(α)
r=√12+(√3)2=2
tan(α)=1√3
α=π6
so, equation becomes
√3cos(θ)+sin(θ)=√2
rcos(α)cos(θ)+rcos(α)sin(θ)=√2
rcos(θ−α)=√2
2cos(θ−π6)=√2
cos(θ−π6)=1√2
cos(θ−π6)=cosπ4
θ−π6=2nπ±π4
θ=2nπ±π4+π6
θ=2nπ+π4+π6 or θ=2nπ−π4+π6
θ=2nπ+5π4 or θ=2nπ−π12
This is of the form
acos(θ)+bsin(θ)=c
So, a=√3−1, b=√3+1 and c=2
√3−1=rcos(α)
√3+1=rsin(α)
r=√(√3−1)2+(√3+1)2=2√2
tan(α)=√3−1√3+1
tan(α)=tan(π4−π6)\alpha = \frac {\pi}{12}so,equationbecomes(\sqrt 3 - 1) \cos (\theta) + (\sqrt 3 + 1) \sin (\theta) = 2 r \cos (\alpha) \cos (\theta) + r \cos (\alpha) \sin (\theta) = 2r \cos( \theta - \alpha)= 22\sqrt 2 \cos (\theta - \frac {\pi}{12})=\sqrt 2\cos (\theta - \frac {\pi}{12}) = \frac {1}{\sqrt 2}\cos (\theta - \frac {\pi}{12}) = \cos (\frac {\pi}{4})\theta - \frac {\pi}{12}= 2n \pi \pm \frac {\pi}{4} \theta = 2n \pi \pm \frac {\pi}{4} + \frac {\pi}{12}$
sin (2x) - sin (4x) + sin (6x) = 0.
or 2 sin (4x) cos(2x) - sin (4x) = 0
i.e. sin (4x)(2 cos(2x) - 1) = 0
Therefore sin (4x) = 0 or 2cos (2x) -1=0
i.e.
sin(4x)= 0 or cos(2x) =1/2
sin(4x)= 0 or cos(2x)=cos(π3)
Hence
4x=nπ or 2x=2nπ±π3
or
x=nπ4 or x=nπ±π6 for n∈Z
x= n \pi + (-1)^{n+1} (\frac {3 \pi}{10})$
−3≤a≤−2
x=nπ±cos−1√a+3
tan(5x)=cot(2x)
tan(5x)=tan(π2−2x)
or
5x=nπ+π2−2x
x=17(nπ+π2)
x=(2n+1)π10