Question 1.
Find the Principal solutions of the below trigonometric equations
a. sin(x)=√32
b. cos(x)=−1√2
c. tan x=-1
Answer
The principle solutions lies in the range 0 ≤ x ≤ 2π. We can principle solution using the below method
i. Find the value of the angle using the positive value.
ii Then remember these below identities to find the principle values sin(π−x)=sinx sin(π+x)=−\sinx sin(2π−x)=−\sinx cos(π−x)=−cosx cos(π+x)=−cosx cos(2π−x)=cosx tan(π−x)=−tanx tan(π+x)=tanx tan(2π−x)=−tanx
(a) sin(x)=√32 sin(x)=sin(π/3)
Now sin(π−π/3)=sinπ/3
or sin(2π/3)=√32
So principle solutions are π/3, 2π/3
(b) cos(x)=−1√2 cos(x)=−cos(π/4)
Now cos(π−π/4)=−cos(π/4)
or cos(3π/4)=−1√2
Also cos(π+π/4)=−cos(π/4)
or cos(5π/4)=−1√2
So principle solutions are 3π/4, 5π/4
(c) tanx =-1 tan(x)=−tan(π/4)
Now tan(π−π/4)=−tan(π/4)
or tan(3π/4)=−1
Also tan(2π−π/4)=−tanπ/4
or tan(7π/4)=−1
So principle solutions are 3π/4, 7π/4
Find the general solution of the equation Question 2. sin(θ2)=−1
Answer
sin(θ2)=−1 sin(θ2)=sin(−π2) \frac {\theta }{2= n \pi + (-1)^n ( -\frac {\pi}{2}) ,n \in Z θ=2nπ+(−1)n+1π,n∈Z
This is of the form acos(θ)+bsin(θ)=c
So, a=√3, b=1 and c=√2 √3=rcos(α) 1=rsin(α) r=√12+(√3)2=2 tan(α)=1√3 α=π6
so, equation becomes √3cos(θ)+sin(θ)=√2 rcos(α)cos(θ)+rcos(α)sin(θ)=√2 rcos(θ−α)=√2 2cos(θ−π6)=√2 cos(θ−π6)=1√2 cos(θ−π6)=cosπ4 θ−π6=2nπ±π4 θ=2nπ±π4+π6 θ=2nπ+π4+π6 or θ=2nπ−π4+π6 θ=2nπ+5π4 or θ=2nπ−π12
Question 7.
Find the general solution of the equation (√3−1)cos(θ)+(√3+1)sin(θ)=2
Question 8.
Solve sin (2x) - sin (4x) + sin (6x) = 0.
Answer
sin (2x) - sin (4x) + sin (6x) = 0.
or 2 sin (4x) cos(2x) - sin (4x) = 0
i.e. sin (4x)(2 cos(2x) - 1) = 0
Therefore sin (4x) = 0 or 2cos (2x) -1=0
i.e.
sin(4x)= 0 or cos(2x) =1/2
sin(4x)= 0 or cos(2x)=cos(π3)
Hence 4x=nπ or 2x=2nπ±π3
or x=nπ4 or x=nπ±π6 for n∈Z
Question 9. 4cos2(x)sin(x)−2sin2(x)=3sin(x)
Answer
x= n \pi + (-1)^{n+1} (\frac {3 \pi}{10})$
Question 10.
Determine all the values of b for which the equation cos4(x)−(b+2)cos2(x)−(b+3)=0 possesses solution . Find the solutions also
Answer
−3≤a≤−2 x=nπ±cos−1√a+3
Question 11.
Solve the below equation tan(5x)=cot(2x)
Answer
tan(5x)=cot(2x) tan(5x)=tan(π2−2x)
or 5x=nπ+π2−2x x=17(nπ+π2)
Question 12.
Solve the below equation sec(4x)−sec(2x)=2