- Rotational Motion
- |
- Angular velocity
- |
- Angular acceleration
- |
- Rotation with constant angular acceleration
- |
- Kinetic energy of Rotation
- |
- Calculation of moment of inertia
- |
- Parallel Axis Theorem|Theorems of Moment of Inertia
- |
- Perpendicular Axis Theorem
- |
- Torque
- |
- work and power in rotational motion
- |
- Angular acceleration
- |
- Relationship between Angular momentum and torque
- |
- Conservation of Angular momentum
- |
- Radius of gyration
- |
- Rolling Motion|Kinetic Energy of rolling bodies
- |
- Rotational Motion problems with solutions

- We know that when we apply force on any object in direction of the displacement of the object ,work is said to be done

- Similarly force applied to the rotational body does work on it and this work done can be expressed in terms of moment of force (torque) and angular displacement θ

- Consider the figure given below where a force F acts on the wheel of radius R pivoted at point O .so that it can rotate through point O

- This force F rotates the wheel through an angle dθ and dθ is small enough so that we can regard force to be constant during corresponding time interval dt

- Work done by this force is

dW=Fds

but ds=Rdθ

So

dW=FRdθ

- Now FR is the torque Τ due to force F.so we have

dW=Τdθ ----(19)

- if the torque is constant while angle changes from θ
_{1}to θ_{2}then

W=Τ(θ_{2}-θ_{1})=ΤΔθ ---(20)

Thus work done by the constant torque equals the product of the torque and angular displacement

- we know that rate of doing work is the power input of torque so

P=dW/dt=Τ(dθ/dt)=Τω

- In vector notation

P=**Τ**.**ω**

Class 11 Maths Class 11 Physics Class 11 Chemistry

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using feedback button or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.