 # Simple Harmonic Motion MCQ

In this page we have Important Objective type questions on Simple Harmonic Motion for JEE main/Advanced . Hope you like them and do not forget to like , social share and comment at the end of the page.

(A)A body of mass 36 g moves with SHM of amplitude A=13 cm and period T=12s
At t=0 x=+13 cm
Question 1
Find the velocity when x=5 cm
(a) $\pm6.28 \ cm/sec$
(b) $\pm6.00 \ cm/sec$
(c) $\pm7.28 \ cm/sec$
(d) $\pm5.28 \ cm/sec$

Question 2
Find the displacement at t=2 sec
(a) 7.0 cm
(b) 6.5 cm
(c) 6 cm
(d) None of these

Question 3
Find the maximum acceleration and maximum velocity
(a) 3.00 cm2/sec, 6.8 cm/sec
(b) 3.56 cm2/sec, 6.0 cm/sec
(c) 3.2 cm2/sec, 6.1 cm/sec
(d) 3.56 cm2/sec, 6.8 cm/sec

Question 4
Find the equation of motion of the body
(a) $x=Acos{\omega}t$
(b) $x=Acos{(}\omega t+\pi)$
(c) $x=Acos{(}\omega t-\pi)$
(d) None of these

Question 5
Find the force acting on the body when t=2 sec
(a) -64 dyne
(b) -60 dyne
(c) 0 dyne
(d) None of these

## Multiple Choice Questions

Question 6
A solid cylinder is attached to a horizontal massless spring so that it can roll with slipping along the horizontal surface. The spring constant is K .Mass of the cylinder is M.
The system is released from rest where the spring is stretched by x..The Center of mass of the cylinder execute SHM with time period T.Pick the correct value of T
(a) $T=2\pi\sqrt{\frac{3M}{2K}}$
(b) $T=2\pi\sqrt{\frac{2M}{3K}}$
(c) $T=2\pi\sqrt{\frac{M}{K}}$
(d) None of these

Question 7
A mass M at the end of a spring executes SHM with a period t1 while the same mass execute SHM with a period t2 for another spring. T is the period of oscillation when the two springs are connected in series and Mass M is attached at the end.
Find out the correct relation
(a) $\frac{1}{T}=\frac{1}{t_1}+\frac{1}{t_2}$
(b) $T=t_1+t_2$
(c) $T^2=t_1^2+t_2^2$
(d) $\frac{1}{T^2}=\frac{1}{t_1^2}+\frac{1}{t_2^2}$

Question 8
Consider a mass –spring system.This system is given an initial displacement ,it begin to oscillate with frequency f1 .System is now bring to rest and again it is given different displacement and f2 be its frequency of oscillation then frequencies
(a) f1 = f2
(b) f1 > f2
(c) f1 < f2
(d) none of the above

Question 9
The instantaneous displacement of a particle of mass m executing SHM under a force constant k is
$x=Asin{(}\omega t+\varphi)$
Where $\omega=\sqrt{\frac{k}{m}}$
The time average of kinetic energy over a Time period T is
(a) $kA^2$
(b) $\frac{1}{4}kA^2$
(c) $\frac{1}{3}kA^2$
(d) $\frac{1}{2}kA^2$

Question 10
For small amplitude of oscillations potential energy curve w.r.t distance travelled from equilibrium position is
(a) Parabolic
(b) Hyperbolic
(c) Elliptical
(d) circular

Question 11
The homogenous linear differential equation
$\frac{d^2x}{dt^2}+2r\frac{dx}{dt}+\omega^2x=0$ Represents the equation of
(a) Simple harmonic oscillator
(b) Damped harmonic oscillator
(c) Forced harmonic oscillator
(d) None of the above

Question 12
Given the maximum velocity and acceleration of a harmonic oscillator as vmax and amax respectively, its time period in terms of vmax and amax is
(a) $\frac{2\pi v_{max}}{a_{max}}$
(b) $\frac{2\pi a_{max}}{v_{max}}$
(c) $2\pi a_{max}v_{max}$
(d) $\frac{\pi v_{max}}{a_{max}}$

Question 13
Which of the following function represents a simple harmonic oscillation
(a) $sin \omega t-cos \omega t$
(b) $sin^2 \omega t$
(c) $sin \omega x+sin 2 \omega t$
(d) $sin \omega x-sin 2 \omega t$

Question 14
The period of oscillation of a simple pendulum of length L suspended from the roof of a vehicle which moves without friction down an inclined plane of inclination $\alpha$, is given by
(a) $T= 2 \pi \sqrt {\frac {L}{g cos \alpha}}$
(b) $T= 2 \pi \sqrt {\frac {L}{g}}$
(c) $T= 2 \pi \sqrt {\frac {L}{g sin \alpha}}$
(d) $T= 2 \pi \sqrt {\frac {L}{g tan \alpha}}$