- What is Linear equations
- |
- Linear equations Solutions
- |
- Graphical Representation of Linear equation in one and two variable
- |
- Steps to Draw the Given line on Cartesian plane
- |
- Simultaneous pair of Linear equation
- |
- Algebraic Solution of system of Linear equation
- |
- Simultaneous pair of Linear equation in Three Variable
- |
- Steps to solve the Linear equations

- NCERT Solutions Exercise 3.1
- |
- NCERT Solutions Exercise 3.2
- |
- NCERT Solutions Exercise 3.3,3.4,3.5
- NCERT Solutions Exercise 3.6
- |
- NCERT Solutions Exercise 3.7

- Problem and Solutions
- |
- Linear equations Problems
- |
- Linear equation worksheet
- |
- Linear equation word problems
- |
- Linear equations graphical problems

Solve these linear equation in two variable ( x and y)

a. $37x + 41y = 70$

$41x + 37y = 86$

b. $99x + 101y = 499$

$101x + 99y = 501$

c. $23x - 29y = 98$

$29x - 23y =110$

d. $ax + by = a - b$

$bx - ay = a + b$

e. $x + y = a + b$

$ax - by = a^2 - b^2$

f. $(a - b) x + (a + b) y = a^2 - 2ab - b^2$

$(a + b) (x + y) = a^2 - b^2$

g. $8x - 3y = 5xy$

$5y = -2xy$

h. $3(2x + y) = 7xy$

$3(x + 3y) = 11xy$

i. $49x + 51y = 499$

$51x + 49y = 501$

j. $217x + 131y = 913$

$131x + 217y = 827$

Solve these linear equation in two variable ( x and y)

i. $ \frac {1}{2x} + \frac {1}{3y} = 2$

$ \frac {1}{3x} + \frac {1}{2y} = \frac {13}{6}$

ii) $ \frac {2}{x} + \frac {3}{y} = \frac {9}{xy}$

$ \frac {4}{x} + \frac {9}{y} = \frac {21}{xy}$

Where $x \ne 0,y \ne 0$

iii. $ \frac {22}{x+y} + \frac {15}{x-y} = 5$

$ \frac {55}{x+y} + \frac {45}{x-y} = 14$

iv.$ \frac {5}{x+y} - \frac {2}{x-y} = -1$

$ \frac {15}{x+y} + \frac {7}{x-y} = 10$

v. $bx + cy=a+b$

$ ax( \frac {1}{a-b} - \frac {1}{a+b}) + cy ( \frac {1}{b-a} - \frac {1}{b+a})= \frac {2a}{a+b}$

vi)$ \frac {1}{2(2x+3y)} + \frac {1}{7(3x-2y)} = \frac {17}{20}$

$ \frac {7}{(2x+3y)} - \frac {1}{(3x-2y)} = -\frac {28}{5}$

vii.$ \frac {x+1}{2} - \frac {y +4}{11} = 2$

$ \frac {x+3}{2} + \frac {2y+3}{17} = 5$

$ \frac {8x+7y}{xy} =15$

ix. $ \frac {x}{a} + \frac {y}{b} =2$

$ax -by = a^2 - b^2$

x.$ \frac {57}{x+y} + \frac {6}{x-y} = 5$

$ \frac {38}{x+y} + \frac {21}{x-y} = 9$

i. (3, 2)

ii. (3, -1)

iii. (8, 3)

iv. (1,-1)

v. (a, b)

vi. (a,-b)

vii. (0, 0) ,(22/31, 11/23)

viii. (0,0) (1,3/2)

ix. (1 ½ , 9/2)

x. 3,2

i. (1/2, 1/3)

ii. (1 ,3)

iii. (8,3)

iv. (3,2)

v. $ \frac {a}{b},\frac {b}{c}$ vi. (2,1)

vii. 5, 7

viii. (1, 1)

Convert into these forms

$ \frac {7}{y} - \frac {2}{x} =5$

$ \frac {8}{y} + \frac {7}{y} =15$

Take $\frac {1}{x}=p , \frac {1}{y} =q$ and then solve in p& q and then find x and y

ix. (a,b)

x. (11, 8)

Given below are the links of some of the reference books for class 10 math.

- Oswaal CBSE Question Bank Class 10 Hindi B, English Communication Science, Social Science & Maths (Set of 5 Books)
- Mathematics for Class 10 by R D Sharma
- Pearson IIT Foundation Maths Class 10
- Secondary School Mathematics for Class 10
- Xam Idea Complete Course Mathematics Class 10

You can use above books for extra knowledge and practicing different questions.

Thanks for visiting our website.

**DISCLOSURE:** THIS PAGE MAY CONTAIN AFFILIATE LINKS, MEANING I GET A COMMISSION IF YOU DECIDE TO MAKE A PURCHASE THROUGH MY LINKS, AT NO COST TO YOU. PLEASE READ MY **DISCLOSURE** FOR MORE INFO.