physicscatalyst.com logo




Cube Root of Unity





Lets first generalize the concept of cube root of unit by nth root of Unity

nth Roots of Unity

Let us take the equation
zn =1 , Here n is positive number
Mathematically this equation should be nth roots

How to Find the nth roots

Now $1 = cos 0 + i sin 0$
So ,$z^n =cos 0 + i sin 0$
or
$z= (cos 0 + i sin 0)^{\frac {1}{n}}$

By De Moivre's theorem
$z= (cos \frac {2kπ}{n} + i sin \frac {2kπ}{n})$ and m=0,1,2,..n-1

Now It can be written in Euler form as
$z=e^{\frac {i2 \pi k}{n}}$
or
$z= \omega ^k$ where $ \omega= e^{\frac {i2 \pi }{n}}$

Therefore, nth roots are
For $k=0,z^0=1$
$k=1,z^1=\omega $
$k=2,z^2=\omega ^ 2$
....
$k=n-1, z^n=\omega ^{n-1}$

Therefore, nth roots of unity are $1,\omega,\omega ^2,\omega ^3,....,\omega ^{n-1}$

Properties of nth roots of Unity

  • Sum of nth roots of unity is given by
    $1+\omega+ \omega ^2 +\omega ^3+.....+ \omega ^{n-1}$
    Now we can observe that it is geometric series having first term 1 and common ratio ω, So By using sum of n terms of a G.P

    $1+\omega+ \omega ^2 +\omega ^3+.....+ \omega ^{n-1}$
    $=\frac { 1 - \omega ^n}{ 1 - \omega}$

    Now Since $\omega $ is nth root of unity, $\omega ^n = 1$
    Therefore, $1+\omega;+ \omega ^2 +\omega ^3+.....+ \omega ^{n-1} = 0$
  • Product of the nth roots of any complex number z is $(-1)^{n-1}$
  • nth root of unity lies on the unit circle |z|=1 in the Argand plane and it divides the circle in n parts
  • if $ 1, \alpha, \alpha ^2,\alpha ^3,......,\alpha ^{n-1}$ are the nth root of unity,then
    $(1 - \alpha)(1 - \alpha ^2).......(1 - \alpha ^{n-1}) = n$ and,
    $(1 + \alpha)(1 + \alpha ^2).......(1 + \alpha ^{n-1})$
    = 0 if n is even and
    = 1 if n is odd.
Now that we have studied the general concept,lets apply it to cube root of Unit

Cube Root Of Unity

In the above generalization , if we put n=3, then
$ \omega= e^{\frac {i2 \pi k}{3}}$ and The cube roots are $1,\omega, \omega ^2$
Now
$\omega$ value can be calculated as
$\omega =cos \frac {2 \pi}{3} + i sin \frac {2 \pi}{3}= \frac {-1+i \sqrt {3}}{2}$
So cube roots are 1, $ \frac {-1+i \sqrt {3}}{2}$ and $ \frac {-1-i \sqrt {3}}{2}$

We can observe that one root is real and other two are complex roots and they are conjugate to each other

Properties of Cube roots of Unity

  • $z^3 -1 =(z-1)(z-\omega)(z-\omega ^2)$
  • $\omega$ and $\omega ^2$ are roots of the equation $z^2 +z + 1=0$
  • Sum of the roots is $1+ \omega + \omega ^2 =0$
  • Products of the roots
    $1 \times \omega \times \omega ^2 =\omega ^3=1$
    This is an important property
    Lets see some more examples
    $\omega ^4 =\omega ^3 \omega =\omega $
    $\omega ^5=\omega ^3 \omega ^2=\omega ^2$
    $\omega ^6=\omega ^3 \omega ^3=1$
    So we can generalized this as
    $\omega ^{3n} = 1$

    $\omega ^{3n+1} = \omega ^{3n} \times \omega = \omega $
    $\omega ^{3n+2}= \omega ^{3n} \times \omega ^2 = \omega ^2$
  • $1 + \omega ^n +\omega ^{2n} =0$ if n is not a multiple of 3
    $1 + \omega ^n +\omega ^{2n} =3$ if n is multiple of 3
  • Cube roots of -1 are $-1, -\omega,\omega ^2$
  • $z^3 +1 =(z+1)(z+\omega)(z+\omega ^2)$
  • The following factorization should be remembered:
    (a, b, c are Real Numbers and ω is the cube root of unity)
    $a^3 - b^3= (a-b) (a-\omega b) (a-\omega ^2 b)$
    $x^2 +x+1=(x-\omega)(x-\omega ^2)$
    $a^3 - b^3= (a+b) (a+\omega b) (a+\omega ^2 b)$
    $a^2 +ab+b^2 = (a-b \omega)(a-b \omega ^2)$
    $a^3 + b^3 + c^3 - 3abc = (a+b+c) (a+\omega b+\omega ^2 c) (a+\omega ^2 b+\omega c)$

Solved Examples

1) Find the value of expression
$1.(2-\omega)(2-\omega ^2) + 2.(3-\omega)(3-\omega ^2)+ .....(n-1)(3-\omega)(3-\omega ^2)$
Where $\omega$ is cube root of Unity

Solution
We know that
$z^3 -1 =(z-1)(z-\omega)(z-\omega ^2)$
So above expression can be written as
$\sum _{r=2}^{n}(r-1)(r-\omega )(r-\omega ^2)$
$=\sum _{r=2}^{n}(r^3 -1)$
$=\sum _{r=2}^{n}r^3 - \sum _{r=2}^{n}1$
$=( \frac {n(n+1)}{2})^2 -1 -(n-1) =( \frac {n(n+1)}{2})^2 -n$

2) (1+i)8 +(1-i)8
Solution
1+ i =√2( cos π/4 + isin π/4) and 1-i =√2( cos π/4 - isin π/4)

Therefore,
(1+i)8 +(1-i)8= 16( cos π/4 + isin π/4)8 + 16(cos π/4 - isin π/4)8
=16(cos 2π + sin 2π) + 16(cos 2π - sin 2π)
=32

Cube root of Any Number

if $x^3 =a$, then cube roots are given as
$a^{1/3},a^{1/3} \omega, a^{1/3} \omega ^2$


Also Read







Latest Updates
Sound Class 8 Science Quiz

Limits Class 11 MCQ

Circles in Conic Sections Class 11 MCQ

Plant Kingdom free NEET mock tests

The Living World free NEET mock tests