physicscatalyst.com logo




Eulers formula and De moivre's theorem





Euler's formula

  • For any real number x, eix = cos x + i sin x
  • Let z be a non zero complex number; we can write z in the polar form as,
    z = r(cos θ + i sin θ) = r e, where r is the modulus and θ is argument of z.
  • Important point
    Multiplying a complex number z with e gives
    z *e = re X e = rei(α + θ)
    The resulting complex number rei(α + θ) will have the same modulus r and argument (α + θ).

De Moivre's theorem

De Moivre's theorem states following cases
  • Case I It states that for any integer n,

    (cos θ + i sin θ)n = cos (nθ) + i sin (nθ)

  • Case II if n is of the form p/q where p, q are integers and q > 0
    then
    (cos θ + i sin θ)n =cos (2k π+ θ)p/q + sin (2k π+ θ)p/q
    Where k=0,1,2,...q-1

Proof for De Moivre's theorem(Case -1)


Prove using Euler's Formula

This can be easily proved using Euler's formula as shown below.

We know that, (cos θ + i sin θ) = e
(cos θ + i sin θ)n = [e]n=ei(nθ)
Therefore,
ei(nθ) = cos (nθ) + i sin (nθ)

Prove using Mathematical Induction ( n being a positive number)
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)

Step 1 for n=1
(cos θ + i sin θ)n=(cos θ + i sin θ)

Step 2 for n=m,let us assume the theorem is true for n=m
(cos θ + i sin θ)m = cos (mθ) + i sin (mθ)

step 3Now for n=m+1
(cos θ + i sin θ)m+1
=(cos θ + i sin θ)m(cos θ + i sin θ)
=[cos (mθ) + i sin (mθ)](cos θ + i sin θ)
=[cos(mθ) cosθ -sin(mθ)sin θ] +i[cos (mθ)sin θ + sin (mθ)cos θ]
=cos (m+1)θ + i sin (m+1)θ
So, theorem holds good for n=m+1
So, by principle of Mathematical Induction

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)

For negative integers, we can write like n=-m where m is positive number
(cos θ + i sin θ)n =1 /(cos θ + i sin θ)m

Now m being positive, we already proved above
=1 /cos (mθ) + i sin (mθ)
Multiplying the Conjugate complex on Numerator and Denominator we get,
=cos (mθ) - i sin (mθ)
=cos (-mθ) +i sin (-mθ)
=cos (nθ) + i sin (nθ)

Application of De Moivre's theorem

  • De Moivre's theorem is used to calculate the root of Complex Numbers
  • For a complex number z=a + ib which can be expressed as polar form as = r(cos θ + sin θ)
    So z1/n = r1/n(cos θ + sin θ)1/n
    Now from De Moivre's theorem, we know that
    (cos θ + i sin θ)1/n =cos (2k π+ θ)/n + sin (2k π+ θ)/n
    Where k=0,1,2,...n-1
  • By putting value of k=0,1,2,...n-1, we can find the root values



Also Read







Latest Updates
Classification of Elements JEE MCQ

Chemical Equilibrium Class 11 MCQ

Redox Reactions JEE Main MCQ

Chemical Equilibrium Class 11 MCQ

Chemical Thermodynamics JEE Advanced MCQ