# How to solve quadratic equations by completing the square

### 2) Solving quadratic equations by completing the square

In this method we create square on LHS and RHS and then find the value.

ax2 +bx+c=0

Step 1 Dividing by a on both the sides
x2 +(b/a) x+(c/a)=0

Step 2 Square formation on the LHS using the first two terms. So quadratic equations becomes
( x+b/2a)2 –(b/2a)2 +(c/a)=0

Step 3 Rearranging the terms on the LHS and RHS,we get the quadratic in the form
( x+b/2a)2=(b2-4ac)/4a2

Step 4 Now you can see that RHS does not contain any variable ,it just contains the variables,So we find the square root of the calculated term and RHS to find the roots of the quadratic equation

Example

x2 +4x-5=0

step 1 Now a=1,so need to divide
step 2 Square formation on the LHS using the first two terms. So quadratic equations becomes
(x+2)2 -4-5=0

step 3 Rearranging the terms on the LHS and RHS,we get the quadratic in the form
(x+2)2=9

step4 Roots of the equation can be find using square root on both the sides

x+2 =-3  => x=-5

x+2=3=> x=1

Check out the below Video to see more examples on Square Method