physicscatalyst.com logo





NCERT Solutions for Class 10 Maths Chapter 4 Exercise 4.3




NCERT Solutions for Class 10 Maths Chapter 4 - Quadratic Equations Exercise 4.3

In this page we have NCERT Solutions for Class 10th Maths: Chapter 4 - Quadratic Equations for EXERCISE 4.3 . Hope you like them and do not forget to like , social_share and comment at the end of the page.
2
Square method
In this method we create square on LHS and RHS and then find the value.
ax2 +bx+c=0
1) x2 +(b/a) x+(c/a) =0
2) ( x+b/2a)2 –(b/2a)2 +(c/a)=0
3) ( x+b/2a)2=(b2-4ac)/4a2
4) $x = \frac {-b \pm \sqrt {b^2 -4ac}}{2a}$
Example
x2 +4x-5=0
1) (x+2)2 -4-5=0
2) (x+2)2=9
3) Roots of the equation can be find using square root on both the sides
x+2 =-3 => x=-5
x+2=3=> x=1
3
Quadratic method
For quadratic equation
ax2 +bx+c=0,
roots are given by
$x = \frac {-b +\sqrt {b^2 -4ac}}{2a}$ ,$x= \frac {-b -\sqrt {b^2 -4ac}}{2a}$
For b2 -4ac > 0, Quadratic equation has two real roots of different value
For b2-4ac =0, quadratic equation has one real root
For b2-4ac < 0, no real roots for quadratic equation


Question 1
Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
(i) 2x2– 7x+3 = 0
(ii)2x2+x– 4 = 0
(iii)4x2+ 4√3x+ 3 = 0
(iv)2x2+x+ 4 = 0

Answer

(i) 2x2–7x+ 3 = 0
On dividing both sides of the equation by 2, we get
x2– 7x/2 +3/2=0
x2– 2 ×x× 7/4 +3/2=0
adding (7/4)2 and subtracting on LHS, we get
(x)2- 2 ×x× 7/4 + (7/4)2- (7/4)2+ 3/2=0
(x- 7/4)2= 49/16 - 3/2
(x- 7/4)2= 25/16
(x- 7/4) =± 5/4
x= 7/4± 5/4
x= 7/4+ 5/4 orx= 7/4 - 5/4
x= 12/4 orx= 2/4
x= 3 or 1/2

(ii) 2x2+x– 4 = 0
On dividing both sides of the equation, we get
x2+x/2 – 2=0
adding (1/4)2and Subtracting to LHS, we get
(x)2+2 ×x× 1/4 + (1/4)2- (1/4)2 -2 =0
(x+ 1/4)2= 33/16
x+ 1/4 = ± √33/4
x= ± √33/4 - 1/4
x= ± √33-1/4
x= √33-1/4 orx= -√33-1/4

(iii) 4x2+ 4√3x+ 3 = 0
(2x)2+ 2 × 2x× √3+ (√3)2= 0
(2x+ √3)2= 0
(2x+ √3) = 0 and (2x+ √3) = 0
x= -√3/2 orx= -√3/2

(iv) 2x2+x+ 4 = 0
On dividing both sides of the equation, we get
x2+ 1/2x+2=0
Adding and Subtracting (1/4)2to LHS, we get
(x)2+2 ×x× 1/4 + (1/4)2- (1/4)2+ 2=0
(x+ 1/4)2= 1/16 - 2
(x+ 1/4)2= -31/16
However, the square of number cannot be negative.
Therefore, there is no real root for the given equation.

Question 2
Find the roots of the quadratic equations given in Q.1 above by applying the quadratic formula.

Answer

(i) 2x2–7x+ 3 = 0
On comparing this equation withax2+bx+c= 0, we get
a= 2,b= -7 andc= 3
By using quadratic formula
$x = \frac {-b \pm \sqrt {b^2 -4ac}}{2a}$
Substituting the values, we get
$x = \frac {7\pm \sqrt {49-24}}{4}$
$x = \frac {7\pm 5}{4}$
Taking + and – separately we get
x=3 or 1/2

(ii) 2x2+x- 4 = 0
On comparing this equation withax2+bx+c= 0, we get
a = 2, b = 1 andc= -4
By using quadratic formula
$x = \frac {-b \pm \sqrt {b^2 -4ac}}{2a}$
Substituting the values, we get
x= -1+√33/4 orx= -1-√33/4

(iii) 4x2+4√3x+ 3 = 0
On comparing this equation withax2+bx+c= 0, we get
a=4,b=4√3 and c = 3
By using quadratic formula
$x = \frac {-b \pm \sqrt {b^2 -4ac}}{2a}$
Substituting the values, we get
x= √3/2 orx= -√3/2

(iv)2x2+x+ 4 = 0
On comparing this equation withax2+bx+c= 0, we get
a= 2,b= 1 andc= 4
By using quadratic formula
$x = \frac {-b \pm \sqrt {b^2 -4ac}}{2a}$
x= -1±√1-32/4
x= -1±√-31/4
The square of a number can never be negative.
∴There is no real solution of this equation.


Question 2
Find the roots of the following equations:
(i)x-1/x= 3,x≠ 0
(ii) 1/x+4 - 1/x-7 = 11/30,x= -4, 7

Answer

(i)x-1/x= 3
x2- 3x-1 = 0
On comparing this equation withax2+bx+c= 0, we get
a= 1,b= -3 andc= -1
By using quadratic formula, we get
$x = \frac {-b \pm \sqrt {b^2 -4ac}}{2a}$
x=3±√9+4/2
x= 3±√13/2
x= 3+√13/2 orx= 3-√13/2

(ii) 1/x+4 - 1/x-7 = 11/30
x-7-x-4/(x+4)(x-7) = 11/30
-11/(x+4)(x-7) = 11/30
(x+4)(x-7) = -30
x2- 3x- 28 = 30
x2- 3x+ 2 = 0
By using quadratic formula, we get
$x = \frac {-b \pm \sqrt {b^2 -4ac}}{2a}$
Substituting the values
x= 1 or 2

Question 4
The sum of the reciprocals of Rehman's ages, (in years) 3 years ago and 5 years from now is 1/3. Find his present age.

Answer

Let the present age of Rehman bexyears.
Three years ago, his age was (x- 3) years.
Five years hence, his age will be (x+ 5) years.
As per question, the sum of the reciprocals of Rahman’s ages 3 years ago and 5 years from now is 1/3.
∴ 1/(x-3)+ 1/(x-5) = 1/3
(x+5+x-3)/(x-3)(x+5) = 1/3
3(2x+2) = (x-3)(x+5)
x2-4x- 21 = 0
Solving as per Factoring method
x2- 7x+ 3x- 21 = 0
x(x- 7)+ 3(x- 7) = 0
(x- 7)(x+ 3) = 0
x= 7, -3
However, age cannot be negative.
Therefore, Rehman's present age is 7 years.

Question 5
In a class test, the sum of Shefali’ s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.

Answer

Let the marks in Mathematics bex.
Then, the marks in English will be 30 -x.
According to the question,
(x+ 2) (30 -x- 3) = 210
(x+ 2) (27 -x) = 210
-x2+ 25x+ 54 = 210
x2- 25x+ 156 = 0
x2-12x- 13x+ 156 = 0
x (x- 12) -13(x- 12) = 0
(x- 12) (x- 13) = 0
x= 12, 13
If the marks in Mathematics are 12, then marks in English will be 30 - 12 = 18
If the marks in Mathematics are 13, then marks in English will be 30 - 13 = 17

Question 6
The diagonal of a rectangular field is 60 meters more than the shorter side. If the longer side is 30 meters more than the shorter side, find the sides of the field.
Answer
Let the shorter side of the rectangle bexm.
Then, larger side of the rectangle = (x+ 30) m
Now Diagonal of the rectangle is given by
$D= \sqrt {l^2 + b^2}$
$D= \sqrt {x^2 + (x+30)^2}$
Now D=(x+30)
So
$x + 60 = \sqrt {x^2 + (x+30)^2}$
Squaring both the sides
x2+ (x+ 30)2= (x+ 60)2
x2- 60x- 2700 = 0\
x2- 90x+ 30x- 2700 = 0
x (x- 90)+ 30(x-90)
(x- 90) (x+ 30) = 0
x= 90, -30
However, side cannot be negative. Therefore, the length of the shorter side will be90 m.
Hence, length of the larger side will be (90 + 30) m = 120 m.

Question 7
The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.
Answer
Let the larger and smaller number bexandyrespectively.
According to the question,
x2-y2= 180 ---(A)
y2= 8x ---(B)
From equation A and B
x2- 8x= 180
x2-8x- 180 = 0
x= 18, -10

However, the larger number cannot be negative as 8 times of the larger number will be negative and hence, the square of the smaller number will be negative which is not possible.
Therefore, the larger number will be 18 only.
x= 18
y2= 8x = 8 × 18 = 144
y= ±√44= ±12
∴ Smaller number = ±12
Therefore, the numbers are 18 and 12 or 18 and - 12.

Question 8
A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.

Answer

Let the speed of the train bexkm/hr.
Time taken to cover 360 km = 360/xhr.
According to the question,
(x+ 5) [360-(1/x)] = 360
360 -x+ 1800-(5/x)= 360
x2+5x+ 10x- 1800 = 0
x= 40, -45
However, speed cannot be negative.
Therefore, the speed of train is 40 km/h.

Question 9
Two water taps together can fill a tank in 75/8 hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.

Answer

Let the time taken by the smaller pipe to fill the tank be x hr.
Time taken by the larger pipe = (x- 10) hr.
Part of tank filled by smaller pipe in 1 hour = 1/x
Part of tank filled by larger pipe in 1 hour = 1/x- 10
It is given that the tank can be filled in 75/8 hours by both the pipes together. Therefore,
1/x+ 1/(x-10) = 8/75
(x-10+x)/x(x-10) = 8/75
2x-10/x(x-10) = 8/75
75(2x- 10) = 8x2- 80x
8x2- 230x+750 = 0
x= 25, 30/8
Time taken by the smaller pipe cannot be 30/8= 3.75 hours. As in this case, the time taken by the larger pipe will be negative, which is logically not possible.

Therefore, time taken individually by the smaller pipe and the larger pipe will be 25 and 25 - 10 =15 hours respectively.

Question 10
An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11 km/h more than that of the passenger train, find the average speed of the two trains.

Answer

Let the average speed of passenger train bexkm/h.
Average speed of express train = (x+ 11) km/h
It is given that the time taken by the express train to cover 132 km is 1 hour less than the passenger train to cover the same distance.
$ \frac {132}{x} - \frac {132}{x+ 11} =1$
$132 [\frac {x+11 -x}{x(x+11)}] =1$
132 × 11 =x (x+ 11)
x2+ 11x- 1452 = 0
x= - 44, 33
Speed cannot be negative.

Therefore, the speed of the passenger train will be 33 km/h and thus, the speed of the express train will be 33 + 11 = 44 km/h.

Question 11
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.

Answer

Let the sides of the two squares bexm andym. Therefore, their perimeter will be 4xand 4y respectively and their areas will bex2andy2respectively.
As per question
4x- 4y= 24
x-y= 6
x=y+ 6
Also,x2+y2= 468
So (6+y2)+y2= 468
2y2+ 12y+ 432 = 0
y2+ 6y - 216 = 0
Solving by factor method
y= -18, 12
However, side of a square cannot be negative.
Hence, the sides of the squares are 12 m and (12 + 6) m = 18 m.



Download NCERT solution Quadratic Equation Exercise 4.3 as pdf
link to this page by copying the following text
Also Read



Reference Books for class 10

Given below are the links of some of the reference books for class 10 math.

  1. Oswaal CBSE Question Bank Class 10 Hindi B, English Communication Science, Social Science & Maths (Set of 5 Books)
  2. Mathematics for Class 10 by R D Sharma
  3. Pearson IIT Foundation Maths Class 10
  4. Secondary School Mathematics for Class 10
  5. Xam Idea Complete Course Mathematics Class 10

You can use above books for extra knowledge and practicing different questions.


Class 10 Maths Class 10 Science

Practice Question

Question 1 What is $1 - \sqrt {3}$ ?
A) Non terminating repeating
B) Non terminating non repeating
C) Terminating
D) None of the above
Question 2 The volume of the largest right circular cone that can be cut out from a cube of edge 4.2 cm is?
A) 19.4 cm3
B) 12 cm3
C) 78.6 cm3
D) 58.2 cm3
Question 3 The sum of the first three terms of an AP is 33. If the product of the first and the third term exceeds the second term by 29, the AP is ?
A) 2 ,21,11
B) 1,10,19
C) -1 ,8,17
D) 2 ,11,20






Note to our visitors :-

Thanks for visiting our website.
DISCLOSURE: THIS PAGE MAY CONTAIN AFFILIATE LINKS, MEANING I GET A COMMISSION IF YOU DECIDE TO MAKE A PURCHASE THROUGH MY LINKS, AT NO COST TO YOU. PLEASE READ MY DISCLOSURE FOR MORE INFO.