physicscatalyst.com logo




Electric flux





9. Electric Flux



  • Consider a plane surface of area ΔS in a uniform electric field E in the space.

  • Draw a positive normal to the surface and θ be the angle between electric field E and the normal to the plane.

    Electric Flux

  • Electric flux of the electric field through the choosen surface is then
    Δφ = E ΔS cosθ

  • Corresponding to area ΔS we can define an area vector ΔS of magnitude ΔS along the positive normal. With this definition one can write electric flux as
    Δφ = E . ΔS

  • direction of area vector is always along normal to the surface being choosen.

  • Thus electric flux is a measure of lines of forces passing through the surface held in the electric field.

    Special Cases
  • If E is perpendicular to the surface i. e., parallel to the area vector then θ = 0 and
    Δφ = E ΔS cos0

  • If θ = π i. e., electric field vector is in the direction opposite to area vector then
    Δφ = - E ΔS

  • If electric field and area vector are perpendicular to each other then θ = π/2 and Δφ = 0

  • Flux is an scaler quantity and it can be added using rules of scaler addition.

  • For calculating total flux through any given surface , divide the surface into small area elements. Calculate the flux at each area element and add them up.

  • Thus total flux φ through a surface S is
    φ ≅ ΣE.ΔS

  • This quantity is mathematically exact only when you take the limit ΔS→0 and the sum in equation 3 is written as integral
    φ = ∫ΣE.dS





link to this page by copying the following text





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology





Note to our visitors :-

Thanks for visiting our website.
DISCLOSURE: THIS PAGE MAY CONTAIN AFFILIATE LINKS, MEANING I GET A COMMISSION IF YOU DECIDE TO MAKE A PURCHASE THROUGH MY LINKS, AT NO COST TO YOU. PLEASE READ MY DISCLOSURE FOR MORE INFO.