Electric flux
9. Electric Flux
- Consider a plane surface of area ΔS in a uniform electric field E in the space.
- Draw a positive normal to the surface and θ be the angle between electric field E and the normal to the plane.
- Electric flux of the electric field through the choosen surface is then
Δφ = E ΔS cosθ
- Corresponding to area ΔS we can define an area vector ΔS of magnitude ΔS along the positive normal. With this definition one can write electric flux as
Δφ = E . ΔS
- direction of area vector is always along normal to the surface being choosen.
- Thus electric flux is a measure of lines of forces passing through the surface held in the electric field.
Special Cases
- If E is perpendicular to the surface i. e., parallel to the area vector then θ = 0 and
Δφ = E ΔS cos0
- If θ = π i. e., electric field vector is in the direction opposite to area vector then
Δφ = - E ΔS
- If electric field and area vector are perpendicular to each other then θ = π/2 and Δφ = 0
- Flux is an scaler quantity and it can be added using rules of scaler addition.
- For calculating total flux through any given surface , divide the surface into small area elements. Calculate the flux at each area element and add them up.
- Thus total flux φ through a surface S is
φ ≅ ΣE.ΔS
- This quantity is mathematically exact only when you take the limit ΔS→0 and the sum in equation 3 is written as integral
φ = ∫ΣE.dS
link to this page by copying the following text