For functions \(f:X - > {\bf{R}}\) and \(g:X - > {\bf{R}}\), we have

*Addition*

\(\left( {f + g} \right)\left( x \right) = f\left( x \right) + g\left( x \right),x \in X\)*Substraction*

\(\left( {f - g} \right)\left( x \right) = f\left( x \right)-g\left( x \right),x \in X\)*Multiplication*

\(\left( {f.g} \right)\left( x \right) = f\left( x \right).g\left( x \right),x \in X\)*Multiplication by real number*\(\left( {kf} \right)\left( x \right) = kf\left( x \right),x \in X\), where \(k\) is a real number.*Division*

\(\frac{f}{g}\left( x \right) = \frac{{f(x)}}{{g(x)}}\)

\(x \in X\) and \(g\left( x \right) \ne 0\)

- Cartesian Products
- |
- What is relations?
- |
- What is Function
- |
- Domain of Function
- |
- Range of Function
- |
- Identity Function
- |
- Constant Function
- |
- Linear Function
- |
- Modules Function
- |
- Greatest Integer Function
- |
- Polynomial Function
- |
- Algebra of Real Function

Class 11 Maths Class 11 Physics

Thanks for visiting our website.

**DISCLOSURE:** THIS PAGE MAY CONTAIN AFFILIATE LINKS, MEANING I GET A COMMISSION IF YOU DECIDE TO MAKE A PURCHASE THROUGH MY LINKS, AT NO COST TO YOU. PLEASE READ MY **DISCLOSURE**Â FOR MORE INFO.