Where $a_n,a_{n-1},....,a_1,a_0$ are constant and real numbers and n is a non-negative integer

- a
_{n},a_{n-1},...,a,a_{0}are called the coefficients for x^{n},x^{n-1},..,x^{},x^{0} - n is called the degree of the polynomial function
- A constant Function is the polynomial function with zero degree
- n is a non-negative integer.It can not be fraction also

Example of Polynomial functions

$3x^2 + 4x+6$

$9x^3 -4x^2 +1$

$4x +1$

$4x^2 + \sqrt {2} $

The below are not polynomial functions

$x^{-4} + 1$

$ \sqrt {x} + 2x +1$

$ x^{2/3} +1$

$3x^2 + 4x+6$

$9x^3 -4x^2 +1$

$4x +1$

$4x^2 + \sqrt {2} $

The below are not polynomial functions

$x^{-4} + 1$

$ \sqrt {x} + 2x +1$

$ x^{2/3} +1$

Type of Polynomial function |
Example |
Degree |

Constant function |
$1$ |
n=0 |

Linear function |
$4x +1$ |
n=1 |

Quadratic function |
$x^2 +4x +1$ |
n=2 |

Cubic Function |
$3x^3 -4x^2+x +11$ |
n=3 |

Quartic Function |
$x^4 +2x^3 +4x^2+x +1$ |
n=4 |

Function f(x) =0 is also an polynomial function with undefined degree

Domain = R

Range is dependent on the type of polynomial function.

For Linear function ,Range is R

For constant function Range is {c}

For Quadratic function like ${x^2 +1}$ , Range is $[1,\infty)$

Here are the graph for function

$f(x)=3$ ( Constant function)

$f(x)=x+2$(Linear Function)

$f(x)=3x+1$(Linear Function)

For Quadratic function, the graph is a parabolic graph. Lets see few example

1) $f(x) =2x^2$ , $h(x) =5x^2$ , $g(x) =10x^2$

We can see the graph is a upward parabola and as we increase the coefficient of $x^2$,the graph is stretched vertically

2) $f(x) =-2x^2$ , $h(x) =-5x^2$ , $g(x) =-10x^2$

We can see the graph is a downward parabola and as we increase the coefficient of $x^2$,the graph is stretched vertically

3) $f(x) = x^2 + 2x +1$ , $g(x) = x^2 + 4x +1$ ,$h(x) =x^2 +6x +1$

We can see the graph is a upward parabola and with increase in coefficient of x ,it drifts downwards on the left

4. $f(x) =x^2 +1$ and $h(x) =-x^2 -1$

Here since their are no real roots of the given quadratic function , the graph is not touching the x-axis. First graph is upward above x-axis and second graph is downward below x-axis

So , the intersection of parabola graph depends on the real roots of the function

5.$f(x) =x^2 -5x +6$ and $h(x) =-x^2 +7x -12$

Here since their are real roots of the given quadratic function ,the graph is intersecting the the x-axis.

Lets see few example of the cubic function

1. $f(x) =x^3$

We can see it extends in both upward and downward direction

2. $f(x) = x^3 + 1$

Here is the cubic function with one real root

3.$f(x) = x^3 -3x^2 +3x -1= (x-1)^2$

Here is the cubic function with three equal real root

4.$f(x) = x^3+12x^2+39x+28=(x+1)(x+4)(x+7)$

Here is the cubic function with three different real root.

1. $f(x) =x^4 -5x^2 +4 =(x-1)(x-2)(x+1)(x+2)$

This is a quartic function and it has four real roots .

1. The turning point in a graph is defined as the points from where graph from upward to downward or downward to upward. The turning points in the graph is always less or equal to (n-1) of the polynomial function.So a quartic function has maximum 3 turning points in the graph.A quadratic equation has maximum one turning point. A Cubic equation has maximum 2 turns. You can validate these in above given example graph also

2. The zero's or root of the polynomial function are point at which graph intersect x-axis , i,e the point where the value of y=0. The real roots of the polynomial function is always less or equal to the degree n of the polynomial.

a. $y =x^2 +5$

b. $y = x^3 $

c. $y=x^2 -7x +5$

a. Clearly it is defined for all $x \in R$ b. Clearly it is defined for all $x \in R$ c. Clearly it is defined for all $x \in R$ 2. Find the domain and range of function

$y= \frac {1}{\sqrt {x- [x]}}$

We have ,

$y= \frac {1}{\sqrt {x- [x]}}$

We know that

$0 \leq x -[x] < 1 , x \in R$

for $x \in Z ,x -[x]=0$

So Domain is R - Z

$0 < x- [x] < 1 , x \in R -Z$

$ 0 < \sqrt {x -[x]} < 1$

$ 1 < \frac {1}{\sqrt {x- [x]}} < \infty$

So Range is = $(1,\infty)$

3. Let $f : R \rightarrow R$ , $f(x) = x^2 + 2[x] -1$ for each $x \in R$

Find the values of f(x) at x= 1.2 ,-.5 ,-2.1

$f(x) = x^2 + 2[x] -1$

$f(1.2) = (1.2)^2 + 2[1.2] -1 =1.44 +2-1=2.44$

$f(-.5) = (-.5)^2 + 2[-.5] -1 =.25 -2-1=-2.75$

$f(-2.1) = (-2.1)^2 + 2[-2.1] -1 =4.41 -6-1=-2.59$

- Cartesian Products
- |
- What is relations?
- |
- What is Function
- |
- Domain of Function
- |
- Range of Function
- |
- Identity Function
- |
- Constant Function
- |
- Linear Function
- |
- Modules Function
- |
- Greatest Integer Function
- |
- Polynomial Function
- |
- Algebra of Real Function

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using feedback button or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.

Class 11 Maths Class 11 Physics