physicscatalyst.com logo




Identity Function





Standard Real Function and Their graphs

We will be exploring some Standard Real Function and Their graphs in next few pages like
a. Identity function
b. Constant function
c. Linear function
d. Quadratic function
e. cubic function
f. polynomial function
g. rational function
h. Modulus function

We will discussing their domain ,range, graph and properties in details.
Let's get started with first function

Identity Function

Identity Function is defined as the real valued function $f : R \rightarrow R$ , y = f(x) = x for each $x \in R$
So ,this function basically associate each real number to itself

Identity function

Domain and Range of the Identity Function

For $f : R \rightarrow R$

Domain = R
Range = R
Co-domain and Range are equal set

Graph of the Identity Function
We can draw the graph on the Cartesian plan with value of x on the x-axis and value of y=f(x) on the y-axis. We can plot the point and join the point to obtain the graph. Here in case of the identity function,the graph will be a straight line passing through the origin

Graph of Identity function

The straight line makes an angle $45^o$ with the x-axis

Other Examples of Identity Functions

So far, we observe the identity function for the whole set of Real number. But Identity function can also be defined for the subset of the real numbers also

We denote these by capital letter I

Example -1
Let A = {1,2,3,4,5,6}
Then Identity function on set A will be defined as
$I_A : A \rightarrow A, I_A=x , x \in A$
for $x=1 ,I_A(1) =x=1$
for $x=2 ,I_A(1) =x=2$
for $x=3 ,I_A(1) =x=3$
for $x=4 ,I_A(1) =x=4$
for $x=5 ,I_A(1) =x=5$

Domain,Range and co-domain will be Set A

Example -2
Let A = R -{1/2}
Then Identity function on set A will be defined as
$I : A \rightarrow A, I_A=x , x \in A$

Domain,Range and codomain will be Set A

Example -3
A identity function can be defined as
$I : Z \rightarrow R, I_A=x , x \in Z$

In this case Domain,Range will be Z and co-domain will be R

Quiz Time

Question 1 Find the value of the function $f(x) = \frac {x-5}{x-3}$ at x=0
A.3/5
B. 0
C.5/3
D. 1
Question 2If f (x) = px + q, where p and q are integers, f (-1) = - 5 and f (3) = 3, then p and q are equal to ?
A. p=2,q=-3
B. p-=2,q=3
C. p=1,q=3
D. p=-2,q=-3
Question 3 if $f(x) =\frac {1}{2x+1}$ ,then
A. $f[f(x] =\frac {2x-1}{2x+3}$
B. $f[f(x] =\frac {2x-1}{2x-3}$
C. $f[f(x] =\frac {2x+1}{2x-3}$
D. $f[f(x] =\frac {2x+1}{2x+3}$
Question 4 Let $f(x) =2^x $,find the value of $\frac {f(2) -f(1)}{2 -1}$
A. 4
B. 2
C. 0
D. 1
Question 5 if $f(x) =\frac {x+1}{x-1}$ ,then
A. $f[f(x] =\frac {x-1}{x+1}$
B. $f[f(x] =x$
C.$f[f(x] =-x$
D.$f[f(x] =\frac {1-x}{1+x}$
Question 6Find the Range and domain of the function $f(x) =x$
A. Domain = R, Range =R
B. Domain = R - {0}, Range = R
C. Domain = R - {0}, Range = {-1/2}
D. Domain = R - {1}, Range = R



link to this page by copying the following text

Note to our visitors :-

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.
We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using comment box given below or contact us directly by sending is an email at [email protected]
We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.


Class 11 Maths Class 11 Physics