- A function is a "well-behaved" relation
- A function \(f\) is a relation from a non-empty set \(A\) to a non-empty set \(B\) such that the domain of \(f\) is \(A\) and no two distinct ordered pairs in \(f\) have the same first element.
- For a relation to be a function, there must be only and exactly one \(y\) that corresponds to a given \(x\)
- If \(f\) is a function from \(A\) to \(B\) and \(\left( {a,b} \right) \in f\), then \(f\left( a \right) = b\), where \(b\) is called the image of \(a\) under \(f\) and \(a\) is called the pre-image of \(b\) under\(f\).
- A function is also termed as a map or a mapping
- A function from A to B is denoted as f: A -> B
- we often denote function as y=f(x). Here y is the function of x. x is called the independent variable and y is called the dependent variable

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

- \(\left\{ {\left( {3,1} \right),\left( {5,1} \right),\left( {7,1} \right),\left( {11,1} \right),\left( {14,1} \right),\left( {17,1} \right)} \right\}\)
- \({\left\{ {\left( {2,1} \right),\left( {4,2} \right),\left( {6,3} \right),\left( {6,4} \right),\left( {10,5} \right),\left( {12,6} \right),\left( {14,7} \right)} \right\}}\)
- \({\left\{ {\left( {1,3} \right),\left( {1,5} \right),\left( {2,5} \right)} \right\}}\)

- \(\left\{ {\left( {3,1} \right),\left( {5,1} \right),\left( {7,1} \right),\left( {11,1} \right),\left( {14,1} \right),\left( {17,1} \right)} \right\}\)

Since 3, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function. - \({\left\{ {\left( {2,1} \right),\left( {4,2} \right),\left( {6,3} \right),\left( {6,4} \right),\left( {10,5} \right),\left( {12,6} \right),\left( {14,7} \right)} \right\}}\)

Since the same first element i.e 6 corresponds to two different images 3 and 4, this relation is not a function - \({\left\{ {\left( {1,3} \right),\left( {1,5} \right),\left( {2,5} \right)} \right\}}\)

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Let P ={1,2,3,4} and Q={11,12,13,14}. Relation are defined from P to Q as R:P-> Q

a. R ={(1,11),(2,12),(3,13),(4,14)}

b. R ={(1,11),(2,12),(3,13)}

c. R ={(1,11),(2,11),(3,11), (4,11)}

d. R ={(1,11),(1,11),(3,11), (4,11),(4,14)}

Which of the following relations are functions? Give reasons.

a. A function as each element in P has corresponding image in Q

b. Not a function because there is no element in Q which corresponds to element 4 in P

c. A function

d. Not a function as element has multiple images in Q

Let P ={1,2,3,4} and Q={a,b,c,d}. function is defined from P to Q as f:P-> Q

f={(1,a),(2,b),(3,c),(4,d)}

Arrow diagram for this function will be

We can identify which relations are function from arrow diagram also. Lets check out some example

The above is not a function

The above is a function

The above is not a function

$R={(x,y),y=x^3 + 2, x \in A ,y \in N }$

Determine if this relation is a function?

Here $R={(x,y),y=x^3 + 2, x \in A ,y \in N }$

Now x takes the values as 1,2,3,4

Therefore for x= 1 y = 1 +2=3

for x=2 , y=8+2 =10

for x=3,y=27+2=29

for x=4, y=64+2=66

So relation can be written as

R={(1,3),(2,10),(3,29),(4,66)}

Here We can see that each element of A is the first element of some ordered pair in the relation and no element in A has multiple images in R

Hence it is a function

2.Let N be the set of natural numbers and the relation R be defined on N

$R = {(x, y) : y = 2x, x, y \in N}$

Is this relation a function?

Here The domain of R is the set of natural numbers N. The co-domain is also N.

The range is the set of even natural numbers.

Since every natural number n has one and only one image, this relation is a function.

- Cartesian Products
- |
- What is relations?
- |
- What is Function
- |
- Domain of Function
- |
- Range of Function
- |
- Identity Function
- |
- Constant Function
- |
- Linear Function
- |
- Modules Function
- |
- Greatest Integer Function
- |
- Polynomial Function
- |
- Algebra of Real Function

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using feedback button or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.

Class 11 Maths Class 11 Physics