physicscatalyst.com logo




NCERT Solution for Class 11 Maths Chapter 2: Relations and Functions Exercise 2.1





In this page we have NCERT Solution for Class 11 Maths Chapter 2: Relations and Functions Exercise 2.2 . Hope you like them and do not forget to like , social share and comment at the end of the page.
Question 1
Let A = {1, 2, 3... 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.
Answer
The relation R from A to A is given as
R = {(x, y): 3x – y = 0, where x, y ∈ A}
i.e., R = {(x, y): 3x = y, where x, y ∈ A}
Therefore,
 R = {(1, 3), (2, 6), (3, 9), (4, 12)}
Domain of Relation
The set of all first elements of the ordered pairs in a relation R from a set
A to a set B is called the domain of the relation R.
Codomain of R
The whole set B is called the codomain of the
relation R
Range of Relation
The set of all second elements in a relation R from a set A to a set B is called the range of the relation R.
 
Therefore,
Domain of R = {1, 2, 3, 4}
The whole set A is the codomain of the relation R.
Therefore,
Codomain of R = A = {1, 2, 3... 14}
Therefore,
Range of R = {3, 6, 9, 12}
Question 2
Define a relation R on the set N of natural numbers by R = {(x, y): y = x+ 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.
Answer
R = {(x, y): y = x + 5, x is a natural number less than 4, x, y ∈ N}
The natural numbers less than 4 are 1, 2, and 3.
∴ R = {(1, 6), (2, 7), (3, 8)}
 
Domain of Relation
The set of all first elements of the ordered pairs in a relation R from a set
A to a set B is called the domain of the relation R.
Codomain of R
The whole set B is called the codomain of the
relation R
Range of Relation
The set of all second elements in a relation R from a set A to a set B is called the range of the relation R.
 
Therefore, Domain of R = {1, 2, 3}
Therefore, Range of R = {6, 7, 8}
 
Question 3
A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.
Answer
A = {1, 2, 3, 5} and B = {4, 6, 9}
R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}
Therefore, R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}
 
Question 4
The given figure shows a relationship between the sets P and Q. write this relation (i) in set-builder form (ii) in roster form. What is its domain and range?
ncert-solution-class11-maths-relation-and-function-1.png
Answer
According to the given figure, P = {5, 6, 7}, Q = {3, 4, 5}
(i)R = {(x, y): y = x – 2; x ∈ P} or R = {(x, y): y = x – 2 for x = 5, 6,7}
(ii) R = {(5, 3), (6, 4), (7, 5)}
Domain of R = {5, 6, 7}
Range of R = {3, 4, 5}
 
Question 5
Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b∈ A, b is exactly divisible by a}.
(i) Write R in roster form
(ii) Find the domain of R
(iii) Find the range of R.
Answer 5
A = {1, 2, 3, 4, 6}, R = {(a, b): a, b ∈ A, b is exactly divisible by a}
(i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3),
(3, 6), (4, 4), (6, 6)}
(ii) Domain of R = {1, 2, 3, 4, 6}
(iii) Range of R = {1, 2, 3, 4, 6}
 
Question 6
Determine the domain and range of the relation R defined by
R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.
Answer 6
R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}
R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)}
Domain of R = {0, 1, 2, 3, 4, 5}
Range of R = {5, 6, 7, 8, 9, 10}
 


Question 7
Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.
Answer
R = {(x, x3): x is a prime number less than 10}
The prime numbers less than 10 are 2, 3, 5, and 7.
Therefore, R = {(2, 8), (3, 27), (5, 125), (7, 343)}
 
Question 8
Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
Answer 8
Given that A = {x, y, z} and B = {1, 2}.
Cartesian Product: A × B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}
Since n (A × B) = 6, the number of subsets of A × B is 26.
Therefore, the number of relations from A to B is 26.
 
Question 9
Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.
Answer 9
R = {(a, b): a, b ∈ Z, a – b is an integer}
It is known that the difference between any two integers is always an integer.
Therefore, Both the domain and range would be Z
Domain of R = Z
Range of R = Z

Also Read



link to this page by copying the following text


Go back to Class 11 Main Page using below links
Class 11 Maths Class 11 Physics Class 11 Chemistry Class 11 Biology





Note to our visitors :-

Thanks for visiting our website.
DISCLOSURE: THIS PAGE MAY CONTAIN AFFILIATE LINKS, MEANING I GET A COMMISSION IF YOU DECIDE TO MAKE A PURCHASE THROUGH MY LINKS, AT NO COST TO YOU. PLEASE READ MY DISCLOSURE FOR MORE INFO.