Integration By Substitution
Here we discuss on of the common method of Integration which is called Integration By Substitution
Let
$I = \int f(x) \; dx $
Let us substitute
x= g(t)
then
dx= g'(t) dt
Therefore
$I = \int f(g(t)) g'(t) \; dt $
Lets see few usage of this
A. if $ \int f(x) \; dx = g(x) $ then $\int f(ax+ b) \; dx= \frac {1}{a} g(x) $
Proof
let us substitute
ax+b =t
then
a dx=dt
or
$dx=\frac {dt}{a}$
Therefore
$\int f(ax+ b) \; dx= \frac {1}{a} \int f(t) \; dt = \frac {1}{a} g(t)= \frac {1}{a} g(t)=\frac {1}{a} g(ax+b) $
Formulas Based on this
$\int (ax+b)^n \; dx= \frac {1}{a} \frac {(ax+ b)^{n+1}}{n+1} + C$
$\int e^{ax+b} \; dx=\frac {1}{a} e^{ax+b} + C$
$\int (\frac {1}{ax+b}) \; dx= \frac {1}{a} ln |ax +b| + c$
$\int a^{bx+c} \; dx= \frac {1}{b} \frac {a^{bx+c}}{ log a} + C$
$\int \cos (ax+b) \; dx= \frac {1}{a} \sin (ax+b) + C$
$\int \sin (ax+b) \; dx= - \frac {1}{a} \cos (ax+b) + C$
$\int \sec^2 (ax+b) \; dx= \frac {1}{a} \tan (ax +b) + C$
$\int \csc^2 (ax+b) \; dx= - \frac {1}{a} \cot^2 (ax+b)+ C$
$ \int \tan (ax+b) \; dx=- \frac {1}{a} ln |\cos (ax+b)| + C$
$ \int \cot (ax+b) \; dx= \frac {1}{a} ln |\sin (ax+b)| + C$
$ \int \sec (ax+b)\; dx =\frac {1}{a} ln |\sec (ax+b) + \tan (ax+b)| + C$
$ \int \csc (ax+b) \; dx= \frac {1}{a} ln |\csc (ax+b) - \cot (ax+b)| + C$
B. $\int \frac {f^{'} (x)}{f(x)} \; dx = ln | f(x)| + C$
Proof
let us substitute
f(x) =t
then
f'(x) dx=dt
Therefore
$\int \frac {f^{'} (x)}{f(x)}\; dx = \int \frac {1}{t} \; dt =ln |t| + C= ln | f(x)| + C $
Example
$\int \frac {1}{1 + e^{-x}} \; dx = \int \frac {1}{1 + 1/e^x} dx = \int \frac {e^x}{1+ e^x} \; dx$
Now this above form
$= ln |1 + e^x| + C$
C. $\int [f(x)]^n f^{'} x \; dx = \frac { [f(x)]^{n+1}}{n +1 } + C , n \ne -1 $
Proof
let us substitute
f(x) =t
then
f'(x) dx=dt
Therefore
$\int [f(x)]^n f^{'} x \; dx = \int t^n \; dt =\frac { [t]^{n+1}}{n +1 }= \frac { [f(x)]^{n+1}}{n +1 } + C $
Solved Examples
Example 1
\[ \int 2x \cos(x^2) \, dx \]
Solution
\[ u = x^2 \]
\[ \frac{du}{dx} = 2x \]
\[ dx = \frac{du}{2x} \]
Now, substitute into the integral:
\[ \int \cos(u) \, \frac{du}{2} \]
\[ = \frac{1}{2} \int \cos(u) \, du \]
\[ = \frac{1}{2} \sin(u) + C \]
Therefore integral is equal to
\[ = \frac{1}{2} \sin(x^2) + C \]
Example 2
\[ \int \frac{\ln(x)}{x} \, dx \]
Solution
\[ u = \ln(x) \]
\[ \frac{du}{dx} = \frac{1}{x} \]
\[ dx = x \, du \]
Substitute in:
\[ \int u \, x \, du \]
\[ = \int u \, du \]
\[ = \frac{u^2}{2} + C \]
Therefore integral is equal to
\[ = \frac{(\ln(x))^2}{2} + C \]
Example 3
\[ \int \sqrt{1 - x^2} \, dx \]
Solution
Here, we can use the trigonometric substitution:
\[ x = \sin(\theta) \]
\[ dx = \cos(\theta) \, d\theta \]
Therefore
\[ \int \sqrt{1 - \sin^2(\theta)} \cos(\theta) \, d\theta \]
\[ = \int \cos^2(\theta) \, d\theta \]
This can be integrated using the half-angle formula:
\[ \int \frac{1 + \cos(2\theta)}{2} \, d\theta \]
\[ = \frac{\theta}{2} + \frac{\sin(2\theta)}{4} + C \]
Now, reverting the substitution:
\[ \sin^{-1}(x) = \theta \]
\[ 2\sin(\theta)\cos(\theta) = \sqrt{1-x^2} \]
Therefore
\[ = \frac{\sin^{-1}(x)}{2} + \frac{x \sqrt{1 - x^2}}{2} + C \]
Example 4
\[ \int \frac{x}{\sqrt{x^2 + 4}} \, dx \]
Solution
\[ u = x^2 + 4 \]
\[ \frac{du}{dx} = 2x \]
\[ \frac{du}{2} = x \, dx \]
Substituting into the integral:
\[ \int \frac{1}{\sqrt{u}} \, \frac{du}{2} \]
\[ = \frac{1}{2} \int u^{-1/2} \, du \]
\[ = \frac{1}{2} \cdot \frac{u^{1/2}}{1/2} + C \]
\[ = \sqrt{u} + C \]
Therefore
\[ = \sqrt{x^2 + 4} + C \]
Example 5
\[ \int e^{3x} \, dx \]
Solution
\[ u = 3x \]
\[ du = 3 \, dx \]
\[ \frac{du}{3} = dx \]
Substituting:
\[ \int e^u \, \frac{du}{3} \]
\[ = \frac{1}{3} \int e^u \, du \]
\[ = \frac{1}{3} e^u + C \]
Therefore
\[ = \frac{1}{3} e^{3x} + C \]
Example 6
\[ \int \sin^2(x) \cos(x) \, dx \]
Solution
\[ u = \sin(x) \]
\[ du = \cos(x) \, dx \]
Substituting:
\[ \int u^2 \, du \]
\[ = \frac{1}{3} u^3 + C \]
Therefore
\[ = \frac{1}{3} \sin^3(x) + C \]
Also Read
Notes
NCERT Solutions & Assignments
Please enable JavaScript to view the comments powered by Disqus.
Go back to Class 12 Main Page using below links
Class 12 Maths
Class 12 Physics
Class 12 Chemistry
Class 12 Biology