physicscatalyst.com logo




NCERT Solutions for Class 12 Maths Chapter 7: Integrals




In this page we have NCERT Solutions for Class 12 Maths Chapter 7: Integrals for EXERCISE 7.1 . Hope you like them and do not forget to like , social share and comment at the end of the page.

Find an anti derivative (or integral) of the following functions by the method of inspection

Question 1: sin 2x.
Solution
The anti derivative of sin 2x is a function of x whose derivative is sin 2x.It is known that,
$\frac{d}{dx} (cos\; 2x) = – 2 sin\; 2x \\ sin\; 2x = – \frac{1}{2} \frac{d}{dx} (cos\; 2x) \\ sin\; 2x = \frac{d}{dx} (- \frac{1}{2} cos\; 2x) \\ Therefore,\; the\; anti – derivative\; of\; sin\; 2x \;is\; (- \frac{1}{2} cos\; 2x)$

Question 2:cos 3x.
Solution
The anti derivative of cos 3x is a function of x whose derivative is cos 3x.It is known that,
$\frac{d}{dx} (sin\; 3x) = 3 cos\; 3x \\ cos\; 3x = \frac{1}{3} \frac{d}{dx} (sin\; 3x) \\ cos\; 3x = \frac{d}{dx} (\frac{1}{3} (sin\; 3x)) \\ Therefore,\; the\; anti – derivative\; of\; cos\; 3x \;is\; (\frac{1}{3} sin\; 3x)$  
 
Question 3:e2x.
Solution
The anti derivative of e2x is a function of x whose derivative is e2x.It is known that,
$\frac{d}{dx} (e ^{2x}) = 2 e ^{2x} \\ e ^{2x} = \frac{1}{2} \frac{d}{dx} (e^{2x}) \\ e ^{2x} = \frac{d}{dx} (\frac{1}{2} e^{2x}) \\ Therefore,\; the\; anti – derivative\; of\; e ^{2x} is \frac{1}{2} e^{2x}$

Question 4: (ax + b) 2.
Solution
The anti derivative of (ax + b) 2 is a function of x whose derivative is (ax + b) 2.It is known that,
$\frac{d}{dx} (ax + b)^{3} = 3a (ax + b) ^{2}\\ (ax + b) ^{2} = \frac{1}{3a} \frac{d}{dx} (ax + b) ^{3} \\ (ax + b) ^{2} = \frac{d}{dx} (\frac{1}{3a} (ax + b) ^{3}) \\ Therefore,\; the\; anti – derivative\; of\; (ax + b) ^{2} is \frac{1}{3a} (ax + b) ^{3}$

Question 5: sin 2x – 4 e 3x
Solution
The anti derivative of sin 2x – 4 e 3x is a function of x whose derivative is sin 2x – 4 e 3x.It is known that,
$\frac{d}{dx} (- \frac{1}{2} cos\; 2x – \frac{4}{3} e^{3x}) = sin 2x – 4 e^{3x} \\ Therefore,\; the\; anti – derivative\; of\; sin\; 2x – 4 e^{3x} \;is\; (- \frac{1}{2} cos\; 2x – \frac{4}{3} e^{3x})$

Find the following integrals in Exercises 6 to 20:

Question 6:$\int (4 e^{3x} + 1) dx$
Solution
$\int (4 e^{3x} + 1) dx \\ =4 \int e^{3x} du + \int 1 dx \\ =4 (\frac{e^{3x}}{3}) + x + C \\ =(4/3) e^{3x} + x + C \\ Where\; c\; is\; the\; constant.$

Question 7: $\int x^{2} (1 – \frac{1}{x^{2}}) dx$
Solution
$\int x^{2} (1 – \frac{1}{x^{2}}) dx \\ =\int (x^{2} – 1) dx \\ =\frac{x^{3}}{3} – x + C \\ Where\; c\; is\; the\; constant$

Question 8:$\int (a x^{2} + b x + c) du$
Solution
$\int (a x^{2} + b x + c) dx \\ =a \int (x^{2}) dx + b \int x dx + c \int 1 dx \\ =a (\frac{x^{3}}{3}) + b (\frac{x^{2}}{2}) + cx + D \\ \\ Where\; D\; is\; the\; constant$


Question 9:$\int (2 x^{2} + e^{x}) dx$
Solution
$\int (2 x^{2} + e^{x}) dx \\ =2 \int (x^{2}) dx + \int e^{x} dx \\ =2 (\frac{x^{3}}{3}) + e^{x} + C \\ \\ Where\; C\; is\; the\; constant$

Question 10: $\int (\sqrt{x} - \frac{1}{\sqrt{x}}) ^{2} dx$
Solution
$\int(\sqrt{x} -\frac{1}{\sqrt{x}}) ^{2} \\ =\int (x + \frac{1}{x} – 2) dx \\ = \int x dx + \int \frac{1}{x} dx – 2 \int 1 dx \\ =\frac{x^{2}}{2} + log \left | x \right | – 2 x + C \\ Where\; C\; is\; the\; constant$

Question 11: $\int \frac{x^{3} + 5 x^{2} - 4}{x ^{2}} dx$
Solution
$\int \frac{x^{3} + 5 x^{2} - 4}{x ^{2}} dx \\= \int x dx + 5 \int 1 dx - \int \frac{4}{x^{2}} dx \\ =\frac{x ^{2}}{2} + 5 x - \frac{4}{x} + C \\ Where\; C\; is\; the\; constant$

Question 12:$\int\frac{x^{3} + 3 x + 4}{\sqrt{x}}dx$
Solution
$\int \frac{x^{3} + 3 x + 4}{\sqrt{x}} dx \\ =\int (x ^{\frac{5}{2}} + 3 x ^{\frac{1}{2}} + 4 x^{- \frac{1}{2}}) \\ = \frac{x ^{\frac{7}{2}}}{\frac{7}{2}} + \frac{3 (x ^{\frac{3}{2}})}{\frac{3}{2}} + \frac{4 (x ^{\frac{1}{2}})}{\frac{1}{2}} + C \\ = \frac{2}{7} (x ^{\frac{7}{2}}) + 2 (x ^{\frac{3}{2}}) + 8 x ^{\frac{1}{2}} + C \\ = \frac{2}{7} (x ^{\frac{7}{2}}) + 2 (x ^{\frac{3}{2}}) + 8 \sqrt{x} + C \\ Where\; C\; is\; the\; constant$

Question 13: $\frac{x^{3} – x^{2} + x - 1}{x – 1}$
Solution
$\int \frac{x^{3} – x^{2} + x - 1}{x – 1} dx \\ \int \frac{(x^{2} + 1) ( x - 1)}{x – 1} dx \\ On\; divinding,\; we\; get\; \\ =\int (x^{2} + 1) dx \\ =\int x^{2} dx + \int 1 dx \\ =\frac{x^{3}}{3} + x + C Where\; C\; is\; the\; constant$

Question 14:$\int(1 – x) \sqrt{x}dx $
Solution
$\int (1 + x) \sqrt{x}\; dx \\ =\int (\sqrt{x} + x^{\frac{3}{2}}) dx \\ =\int x^{\frac{1}{2}} dx + \int x^{\frac{3}{2}} dx \\ =\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + C \\ =\frac{2}{3} x^{\frac{3}{2}} + \frac{2}{5} x^{\frac{5}{2}} + C \\ Where\; C\; is\; the\; constant$

Question 15:$ \int\sqrt{x} (3x^{2} + 2x + 3) dx$
Solution
$\int \sqrt{x} (3x^{2} + 2x + 3) dx \\ =\int (3x ^{\frac{5}{2}} + 2x ^{\frac{3}{2}} + 3u ^{\frac{1}{2}}) dx \\ =3 \int x ^{\frac{5}{2}} dx + 2 \int x ^{\frac{3}{2}} dx + 3 \int x ^{\frac{1}{2}} dx \\ =3 (\frac{x ^{\frac{7}{2}}}{\frac{7}{2}}) + 2 (\frac{x ^{\frac{5}{2}}}{\frac{5}{2}}) + 3 (\frac{x ^{\frac{3}{2}}}{\frac{3}{2}}) + C \\ =\frac{6}{7} x ^{\frac{7}{2}} + \frac{4}{5} x ^{\frac{5}{2}} + 2 x ^{\frac{3}{2}} + C \\ Where\; C\; is\; the\; constant$

Question 16: $\int 2 x – 3 cos\; x + e ^{x} dx$
Solution
$\int (2 x – 3 cos\; x + e ^{x}) dx \\ =2 \int x dx – 3 \int cos\; x dx + \int e ^{x} dx \\ =2 \frac{x ^{2}}{2} – 3 (sin x) + e ^{x} + C \\ =x ^{2} – 2 sin\; x + e ^{x} + C Where\; C\; is\; the\; constant$

Question 17:$\int (2 x^{2} -3 sin x + 5 \sqrt{x})dx$
Solution
$\int (2 x^{2} - 3 sin x + 5 \sqrt{x})\; dx \\ =4 \int x^{2} dx - 3 \int sin x dx + 5 \int x^{\frac{1}{2}}dx \\ =\frac{2 x^{3}}{3} +3 (cos\; x) + 5 (\frac{x ^{\frac{3}{2}}}{\frac{3}{2}}) + C \\ =\frac{2}{3} x^{3} + 3 cos\; x + (10/3) x ^{\frac{3}{2}} + C \\ Where\; C\; is\; the\; constant$

Question 18: $\int sec\; x (tan\; x + sec\; x)$dx
Solution
$\int sec\; x (tan\; x + sec\; x) dx \\ =\int (sec\; x tan\;x + sec ^{2}\; x) dx \\ =sec\;x\; + tan\;x + C \\ Where\; C\; is\; the\; constant$

Question 19:$\int \frac{sec ^{2}\; x}{cosec ^{2}\; x}$dx
Solution
$\int \frac{sec ^{2}\; x}{cosec ^{2}\; x} dx \\ =\int \frac{\frac{1}{cos ^{2}\; x}}{\frac{1}{sin ^{2}\; x}} dx \\ =\int \frac{sin ^{2}\; x}{cos ^{2}\; x} dx \\ =\int (tan ^{2}\; x) dx \\ =\int (sec ^{2}\; x – 1) dx \\ =\int sec ^{2}\; x dx – \int 1 dx \\ =tan x – x + C \\ Where\; C\; is\; the\; constant$

Question 20: $\int \frac{3 – 2 sin\; x}{cos ^{2}\; x}dx$
Solution
$\int \frac{3 – 2 sin\; x}{cos ^{2}\; x} dx \\ =\int (\frac{3}{cos ^{2}\; x} – \frac{2 sin\; x}{cos ^{2}\; x}) dx \\ =3 \int sec ^{2}\; x; dx – 2 \int tan\; x\; sec\; x dx \\ =3 tan\; x – 2 sec\; x + C \\ Where\; C\; is\; the\; constant$

Question 21:
Which of the following below is an integral of $\sqrt{x} + \frac{1}{\sqrt{x}}dx$:
$(a) \frac{1}{3} x^{\frac{1}{3}} + 2 x^{\frac{1}{2}} + C \\ (b) \frac{2}{3} x^{\frac{2}{3}} + \frac{1}{2} x^{2} + C \\ (c) \frac{2}{3} x^{\frac{3}{2}} + 2 x^{\frac{1}{2}} + C \\ (d) \frac{3}{2} x^{\frac{3}{2}} + \frac{1}{2} x^{\frac{1}{2}} + C$ Solution
$\int \sqrt{x} + \frac{1}{\sqrt{x}} dx \\ =\int x ^{\frac{1}{2}} dx + \int x^{- \frac{1}{2}} dx \\ =\frac{x ^{\frac{3}{2}}}{\frac{3}{2}} + \frac{x ^{\frac{1}{2}}}{\frac{1}{2}} + C \\ =\frac{3}{2} x ^{\frac{3}{2}} + 2 x ^{\frac{1}{2}} \\ Option\; c\; is\; correct$

Question 22:
$if\; \frac{d}{dx} f (x) = 4 x^{3} – \frac{3}{x^{4}},\; in\; such\; a\; way\; that\; f (2) = 0,\; then\; f (x)\; is \\ (a) x^{4} + \frac{1}{x ^{3}} – \frac{129}{8} \\ (b) x^{3} + \frac{1}{x ^{4}} + \frac{129}{8} \\ (c) x^{4} + \frac{1}{x ^{3}} + \frac{129}{8} \\(d) x^{3} + \frac{1}{x ^{4}} – \frac{129}{8}$
Solution
Given,
$\frac{d}{dx} f (r) = 4 x^{3} – \frac{3}{x^{4}} \\ Integral\; of\; 4 x^{3} – \frac{3}{x^{4}} = f (x) \\ f (x) = \int 4 x^{3} – \frac{3}{x^{4}}\; dx \\ f (x) = 4 \int x^{3} dr – 3 \int (x ^{- 4}) dx \\ f (x) = 4 \frac{x ^{4}}{4} – 3 \frac{x ^{- 3}}{- 3} + K \\ f (x) = x ^{4} + \frac{1}{x ^{3}} + K $
And$ f (2) = 0 \\ f (2) = 2 ^{4} + \frac{1}{2 ^{3}} + K = 0 \\$
$16 + \frac{1}{8} + K = 0 \\ K = – \frac{129}{8} \\ f (x) = x ^{4} + \frac{1}{x ^{3}} – \frac{129}{8} \\ Option\; (a)\; is\; correct$  

 


Related Topics

link to this page by copying the following text

Search Our Website





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology