NCERT Solutions for Class 12 Maths Chapter 7: Integrals
In this page we have NCERT Solutions for Class 12 Maths Chapter 7: Integrals for
EXERCISE 7.1 . Hope you like them and do not forget to like , social share
and comment at the end of the page.
Find an anti derivative (or integral) of the following functions by the method of inspection
Question 1: sin 2x. Solution
The anti derivative of sin 2x is a function of x whose derivative is sin 2x.It is known that,
$\frac{d}{dx} (cos\; 2x) = – 2 sin\; 2x
\\ sin\; 2x = – \frac{1}{2} \frac{d}{dx} (cos\; 2x) \\ sin\; 2x = \frac{d}{dx} (- \frac{1}{2} cos\; 2x) \\
Therefore,\; the\; anti – derivative\; of\; sin\; 2x \;is\; (- \frac{1}{2} cos\; 2x)$
Question 2:cos 3x. Solution
The anti derivative of cos 3x is a function of x whose derivative is cos 3x.It is known that,
$\frac{d}{dx} (sin\; 3x) = 3 cos\; 3x \\ cos\; 3x = \frac{1}{3} \frac{d}{dx} (sin\; 3x) \\ cos\; 3x = \frac{d}{dx} (\frac{1}{3} (sin\; 3x)) \\ Therefore,\; the\; anti – derivative\; of\; cos\; 3x \;is\; (\frac{1}{3} sin\; 3x)$
Question 3:e2x. Solution
The anti derivative of e2x is a function of x whose derivative is e2x.It is known that,
$\frac{d}{dx} (e ^{2x}) = 2 e ^{2x} \\ e ^{2x} = \frac{1}{2} \frac{d}{dx} (e^{2x}) \\ e ^{2x} = \frac{d}{dx} (\frac{1}{2} e^{2x}) \\ Therefore,\; the\; anti – derivative\; of\; e ^{2x} is \frac{1}{2} e^{2x}$
Question 4: (ax + b) 2. Solution
The anti derivative of (ax + b) 2 is a function of x whose derivative is (ax + b) 2.It is known that,
$\frac{d}{dx} (ax + b)^{3} = 3a (ax + b) ^{2}\\ (ax + b) ^{2} = \frac{1}{3a} \frac{d}{dx} (ax + b) ^{3} \\ (ax + b) ^{2} = \frac{d}{dx} (\frac{1}{3a} (ax + b) ^{3}) \\ Therefore,\; the\; anti – derivative\; of\; (ax + b) ^{2} is \frac{1}{3a} (ax + b) ^{3}$
Question 5: sin 2x – 4 e 3x Solution
The anti derivative of sin 2x – 4 e 3x is a function of x whose derivative is sin 2x – 4 e 3x.It is known that,
$\frac{d}{dx} (- \frac{1}{2} cos\; 2x – \frac{4}{3} e^{3x}) = sin 2x – 4 e^{3x} \\ Therefore,\; the\; anti – derivative\; of\; sin\; 2x – 4 e^{3x} \;is\; (- \frac{1}{2} cos\; 2x – \frac{4}{3} e^{3x})$
Find the following integrals in Exercises 6 to 20:
Question 6:$\int (4 e^{3x} + 1) dx$ Solution
$\int (4 e^{3x} + 1) dx \\ =4 \int e^{3x} du + \int 1 dx \\ =4 (\frac{e^{3x}}{3}) + x + C \\ =(4/3) e^{3x} + x + C \\ Where\; c\; is\; the\; constant.$
Question 8:$\int (a x^{2} + b x + c) du$ Solution
$\int (a x^{2} + b x + c) dx \\ =a \int (x^{2}) dx + b \int x dx + c \int 1 dx \\ =a (\frac{x^{3}}{3}) + b (\frac{x^{2}}{2}) + cx + D \\ \\ Where\; D\; is\; the\; constant$