physicscatalyst.com logo




Integration of Particular Functions




Integration of Particular Functions


A. $\int \frac {1}{x^2 + a^2} dx = \frac {1}{a} \tan ^{-1} (\frac {x}{a}) + C$
Proof
Put $x =a tan \theta$ then $dx= a sec^2 \theta d\theta$
Therefore
$\int \frac {1}{x^2 + a^2} dx$
$=\int \frac {asec^2 \theta}{a^2 tan^2 \theta + a^2} d\theta$
$=\frac {1}{a} \int d\theta= \frac {1}{a} \theta + C = \frac {1}{a} \tan ^{-1} (\frac {x}{a}) + C$

B. $\int \frac {1}{x^2 - a^2} dx = \frac {1}{2a} ln  |\frac {x-a}{x+a}| + C$
Proof
$\frac {1}{x^2 - a^2} =\frac {1}{2a}[ \frac {1}{x-a} - \frac {1}{x+a}]$
So
$\int \frac {1}{x^2 - a^2} dx $
$=\frac {1}{2a}[ \int \frac {1}{x-a} dx - \int \frac {1}{x+a}]$
$= \frac {1}{2a}[ln |x-a| - ln |x+a| + C$
$=\frac {1}{2a} ln  |\frac {x-a}{x+a}| + C$

C. $\int \frac {1}{a^2 - x^2} dx = \frac {1}{2a} ln  |\frac {a+x}{a-x}| + C$
Proof
$\frac {1}{a^2 - x^2} =\frac {1}{2a}[ \frac {1}{a-x} + \frac {1}{a+x}]$
So
$\int \frac {1}{a^2 - x^2} dx $
$=\frac {1}{2a}[ \int \frac {1}{a-x} dx + \int \frac {1}{x+a}]$
$= \frac {1}{2a}[-ln |a-x| + ln |a+x| + C$
$=\frac {1}{2a} ln  |\frac {a+x}{a-x}| + C$

D. $\int \frac {1}{\sqrt {a^2 - x^2}} dx =  \sin ^{-1} (\frac {x}{a}) + C$
Proof
Let $x = a sin\theta$. Then $dx = a cos \theta d\theta$
So,
$\int \frac {1}{\sqrt {a^2 - x^2}} dx $
$=\int \frac {a cos \theta}{\sqrt {a^2 - a^2 sin^2 \theta }}d\theta$
$=\int d\theta = \theta + C = \sin ^{-1} (\frac {x}{a}) + C$

E. $\int \frac {1}{\sqrt {a^2  + x^2}} dx =  ln |x + \sqrt {a^2  + x^2}|   + C$
Proof
Put $x =a tan \theta$ then $dx= a sec^2 \theta d\theta$
Therefore
$\int \frac {1}{\sqrt {a^2  + x^2}} dx$
$=\int sec \theta d\theta$
$=ln |sec \theta + tan \theta| + C$
Now
$tan \theta = \frac {x}{a}$
$sec \theta = \sqrt {1 + tan^2 \theta } = \sqrt {1 + \frac {x^2}{a^2}} $
Therefore
$=ln | \frac {x}{a} + \sqrt {1 + \frac {x^2}{a^2}}| + C_1 = ln |x + \sqrt {a^2  + x^2}|   - ln |a| +C_1 = ln |x + \sqrt {a^2  + x^2}|  + C$

F. $\int \frac {1}{\sqrt {x^2  - a^2}} dx =  ln |x + \sqrt {x^2  - a^2}|   + C$
Proof
Put $x =a sec \theta$ then $dx= a sec \theta tan \theta d\theta $
Therefore
$\int \frac {1}{\sqrt {x^2 -a^2}} dx $
$=\int sec \theta d\theta $
$=ln |sec \theta + tan \theta| + C $
Now
$sec \theta = \frac {x}{a} $
$tan \theta = \sqrt {sec^2 \theta -1 } = \sqrt {\frac {x^2}{a^2} -1} $
Therefore
$=ln | \frac {x}{a} + \sqrt {\frac {x^2}{a^2} -1}| + C_1 = ln |x + \sqrt {x^2  - a^2}|   - ln |a| +C_1 = ln |x + \sqrt {a^2  + x^2}|  + C$
The above formulas are very useful to solve the various types of Integration Problems

Problem Type I

$\int \frac {1}{ax^2 + bx + c} dx$
This integral can be converted to the form A,B, C given above and can be evaluated using the formula

Example 1
$\int \frac {1}{x^2 -6x + 25} dx$
Solution
$\int \frac {1}{x^2 -6x + 25} dx= \int \frac {1}{(x -3)^2 + 4^2} dx$
Substituting y=x-3, or dy=dx, we get
$=\int \frac {1}{y^2 + 4^2} dy$
Now this can be easily evaluated using the formula A with a =4
$\int \frac {1}{x^2 + a^2} dx = \frac {1}{a} \tan ^{-1} (\frac {x}{a}) + C$
Hence
$=\frac {1}{4} \tan ^{-1} (\frac {y}{4}) + C$
Substituting back the value of y
$=\frac {1}{4} \tan ^{-1} (\frac {x-3}{4}) + C$

Problem Type II

$\int \frac {1}{\sqrt {ax^2 + bx + c}} dx$
This integral can be converted to the form D,E,F given above and can be evaluated using the formula

Problem Type III

$\int \frac {px + q}{ax^2 + bx + c} dx$
Here we can decompose this integral using the below formula
$px+q = A \frac {d}{dx} (ax^2 + bx + c) + B$
Then integral is converted as
$=A \int \frac {\frac {d}{dx} (ax^2 + bx + c)} {ax^2 + bx + c} dx + B \int \frac {1}{ax^2 + bx + c} dx $

The first integral is of the form
$\int \frac {f'(x)}{f(x)} dx$ which can be easily evaluated
The second integral is of the form of problem type I
$\int \frac {1}{ax^2 + bx + c} dx $ which can be easily evaluated

Problem Type IV

$\int \frac {px + q}{\sqrt{ax^2 + bx + c}} dx$
Here we can decompose this integral using the below formula
$px+q = A \frac {d}{dx} (ax^2 + bx + c) + B$
Then integral is converted as
$=A \int \frac {\frac {d}{dx} (ax^2 + bx + c)} {ax^2 + bx + c} dx + B \int \frac {1}{\sqrt {ax^2 + bx + c}} dx $

The first integral is of the form
$\int \frac {f'(x)}{f(x)^{1/2}} dx$ which can be easily evaluated
The second integral is of the form of problem type II
$\int \frac {1}{\sqrt {ax^2 + bx + c}} dx$ which can be easily evaluated


Also Read





Go back to Class 12 Main Page using below links
Class 12 Maths Class 12 Physics Class 12 Chemistry Class 12 Biology


Latest Updates
Sound Class 8 Science Quiz

Limits Class 11 MCQ

Circles in Conic Sections Class 11 MCQ

Plant Kingdom free NEET mock tests

The Living World free NEET mock tests