We can do Integration Using Trigonometric Identities for some functions.
A. $\int \cos (Ax) \cos (Bx) \; dx$
We know that
$\cos(A+B)=\cos(A)\cos(B)- \sin(A)\sin(B)$
$\cos(A-B)=\cos(A)\cos(B)+ \sin(A)\sin(B)$
Therefore
$\cos(A)\cos(B) = \frac {1}{2} [\cos(A+B) + \cos(A-B)]$
So we can convert into sum of cos function which is easy to integrate
B. $\int \sin (Ax) \sin (Bx) \; dx$
We know that
$\cos(A+B)=\cos(A)\cos(B)-\sin(A)\sin(B)$
$\cos(A-B)=\cos(A)\cos(B)+\sin(A)\sin(B)$
Therefore
$\sin(A)\sin(B) = \frac {1}{2} [\cos(A+B) - \cos(A-B)]$
So we can convert into difference of cos function which is easy to integrate
C. $\int \sin (Ax) \cos (Bx) \; dx$
We know that
$\sin(A+B)=\sin(A)\cos(B)+ \sin(B)\cos(A)$
$\sin(A-B)=\sin(A)\cos(B)- \sin(B)\cos(A)$
Therefore
$\sin(A) \cos(B) = \frac {1}{2} [\sin(A+B) + \sin(A-B)]$
So we can convert into sum of sin function which is easy to integrate
D. $\int \sin^2 x \; dx$ or $\int \cos^2 x \; dx$
We know that
$\cos2x=\cos^{2}x-\sin^{2}x=2\cos^{2}x-1=1-2\sin^{2}x}$
So
$\cos^2 x= \frac {1+ \cos 2x}{2}$
$\sin^2 x= \frac {1- \cos 2x}{2}$
E.$\int \sin^3 x \; dx$ or $\int \cos^3 x \; dx$
We know that
$\sin(3x)=3\sin(x)-4\sin^{3}x$
$\sin^{3}x= \frac { 3 \sinx - \sin 3x}{4}$
Also
$\cos(3x)=4\cos^{3}x-3\cos(x)$
$\cos^{3}x= \frac {\cos 3x + 3 \cos x}{4}$
F. $\int \tan^2 x \; dx$ or $\int \cot^2 x \; dx$
We know that
$\sec^2x =1 + \tan^2x$
or $\tan^2x =\sec^2 x -1$
$\int \tan^2 x dx = \int (\sec^2 x -1) dx$
Now $\int ( \sec^2 x) \; dx = \tan x + C$
Therefore
$\int \tan^2 x \; dx = \int (\sec^2 x -1) dx= \tan x -x + C$
We know that
$cosec^2 x =1 + \cot^2 x$
or $ \cot^2 x = cosec^2 x -1$
$\int \cot^2 x \; dx = \int (cosec^2 x -1) \; dx$
Now $\int ( cosec^2 x) \; dx = -\cot x + C$
Therefore
$\int \cot^2 x \; dx = \int (cosec^2 x -1) \; dx= -\cot x -x + C$