physicscatalyst.com logo




Projectile Motion on a Inclined Plane



Projectile Motion on a Inclined Plane

  • We earliar studied about Projectile motion when ball is thrown up from ground at an angle.Now in this page , we will see Projectile Motion on a Inclined Plane
  • Projectile Motion on a Inclined Plane is the motion when a ball or object is thrown at an angle up the inclined plane or down the plane.
  • Lets check how to obtain various things like time of flight, range and maximum in each case

Motion Up The inclined plane

Projectile Motion on  a Inclined Plane| Motion Up The inclined plane
  • Let the particle be thrown up at an angle $\theta$ from the horizontal on the inclined plane of angle $\alpha$.
  • We can obtained the equation of motion using both X-Y axis and X' -Y' plane as shown in the figure. X' -Y' plane will be more convienient
  • In X' -Y'
    we have
    $a_{x'}=-g \sin \alpha$
    $a_{y'}=-g \cos \alpha$
    $u_{x'}=v_0 cos( \theta - \alpha)$
    $u_{y'}=v_0 sin( \theta - \alpha)$
  • Now equation of motion along both the x' and y' will be
    $x'= v_0 cos( \theta - \alpha) t - \frac {1}{2}g sin \alpha t^2$
    $y'= v_0 sin( \theta - \alpha) t - \frac {1}{2}g cos \alpha t^2$
  • Now for Time of Flight t=T, we have y'=0,so
    $0= v_0 sin( \theta - \alpha) t - \frac {1}{2}g cos \alpha t^2$
    or $T = \frac {2 v_0 sin (\theta - \alpha)}{g cos \alpha}$
  • So range along the inclined plane will be given by
    $x'= v_0 cos( \theta - \alpha) \frac {2 v_0 sin (\theta - \alpha)}{g cos \alpha} - \frac {1}{2}g sin \alpha (\frac {2 v_0 sin (\theta - \alpha)}{g cos \alpha})^2$
    $x'=\frac {2v_0^2 sin (\theta - \alpha)}{g cos \alpha}[cos( \theta - \alpha) - \frac {sin \alpha sin (\theta - \alpha)}{cos \alpha}]$
    $=\frac {2v_0^2 sin (\theta - \alpha)}{g cos^2 \alpha}[cos \alpha cos( \theta - \alpha) - sin \alpha sin (\theta - \alpha)]$
    Now cos(A+B)=(cosAcosB−sinAsinB)
    Therefore
    $=\frac {2v_0^2 cos \theta sin (\theta - \alpha)}{g cos^2 \alpha}$
    Now Applying formula 2 Cos A Sin B=Sin (A+B) - Sin (A-B)
    we have
    $R=\frac {v_0^2[sin (2\theta -\alpha) - sin \alpha]}{g cos^2 \alpha}$
  • In X-Y

    we have
    $a_{x}=0$
    $a_{y}=-g$
    $u_{x}=v_0 cos( \theta)$
    $u_{y}=v_0 sin( \theta)$
  • Now equation of motion along both the x and y will be
    $x= v_0 cos( \theta) t $
    $y= v_0 sin( \theta) t - \frac {1}{2}g t^2$
  • Now when the projectile hit the inclined plane
    $x=Rcos \alpha$
    $y=R sin \alpha$
  • Therefore
    $Rcos \alpha= v_0 cos( \theta) t $
    $R sin \alpha= v_0 sin( \theta) t - \frac {1}{2}g t^2$
    Eliminating t between these two
    $R= \frac {2v_0^2 cos^2 \theta}{g cos \alpha}[tan \theta - tan \alpha]$
    we can deduce this to same formula
    $R=\frac {v_0^2[sin (2\theta -\alpha) - sin \alpha]}{g cos^2 \alpha}$
  • Now for Maximum Range, we should $sin (2\theta -\alpha)$ as maximum i.e $sin (2\theta -\alpha)=1$
    So Maximum Range will be given as
    $R=\frac {v_0^2[sin (2\theta -\alpha) - sin \alpha]}{g cos^2 \alpha}= \frac {v_0^2[1- sin \alpha]}{g cos^2 \alpha}= \frac {v_0^2}{g(1+ sin \alpha)}$

    Motion down The inclined plane

    Projectile Motion on  a Inclined Plane| Motion down the inclined plane
    • Let the particle be thrown down at an angle $\theta$ from the horizontal on the inclined plane of angle $\alpha$.
    • We can obtained the equation of motion using both X-Y axis and X' -Y' plane as shown in the figure. X' -Y' plane will be more convienient
    • In X' -Y'
      we have
      $a_{x'}=-g \sin \alpha$
      $a_{y'}=-g \cos \alpha$
      $u_{x'}=v_0 cos( \theta + \alpha)$
      $u_{y'}=v_0 sin( \theta + \alpha)$
    • Now equation of motion along both the x' and y' will be
      $x'= v_0 cos( \theta + \alpha) t + \frac {1}{2}g sin \alpha t^2$
      $y'= v_0 sin( \theta + \alpha) t - \frac {1}{2}g cos \alpha t^2$
    • Now for Time of Flight t=T, we have y'=0,so
      $0= v_0 sin( \theta + \alpha) t - \frac {1}{2}g cos \alpha t^2$
      or $T = \frac {2 v_0 sin (\theta + \alpha)}{g cos \alpha}$
    • So range along the inclined plane will be given by
      $R= v_0 cos( \theta + \alpha) T + \frac {1}{2}g sin \alpha T^2$
      $=\frac {v_0^2[sin (2\theta +\alpha) + sin \alpha]}{g cos^2 \alpha}$
    • Now for Maximum Range, we should $sin (2\theta +\alpha)$ as maximum i.e $sin (2\theta +\alpha)=1$
      So Maximum Range will be given as
      $R=\frac {v_0^2[sin (2\theta +\alpha) + sin \alpha]}{g cos^2 \alpha}= \frac {v_0^2[1+ sin \alpha]}{g cos^2 \alpha}= \frac {v_0^2}{g(1- sin \alpha)}$



    Solved Examples

    Question 1
    A football is kicked on a inclined plane of angle 30° at speed 18m/s and angle 60° from the horizontal. Find
    1. How much later does it hit the inclined plane?
    2.How far from its initial does it hit the incline place?
    Solution
    Here $v_0=18$ m/s , $\theta =60$ ° and $\alpha =30$°
    Time of Flight is given by
    $T = \frac {2 v_0 sin (\theta - \alpha)}{g cos \alpha}=\frac {2 \times 18 \times .5}{10 \times .866}=1.16$ sec
    Range is given by
    $R=\frac {v_0^2[sin (2\theta -\alpha) - sin \alpha]}{g cos^2 \alpha}$=\frac {18 \times 18 \times .5}{10 \times .866 \times .866}=21.60$ m

    Also Read







Latest Updates
Synthetic Fibres and Plastics Class 8 Practice questions

Class 8 science chapter 5 extra questions and Answers

Mass Calculator

3 Fraction calculator

Garbage in Garbage out Extra Questions7