physicscatalyst.com logo







Motion in straight Line


6. Motion with constant acceleration



  • Motion with constant acceleration or uniformly accelerated motion is that in which velocity changes at the same rate throughout motion.
  • When the acceleration of the moving object is constant its average acceleration and instantaneous acceleration are equal. Thus from eq. 5 we have

  • Let v0 be the velocity at initial time t=0 and v be the velocity of object at some other instant of time say at t2=t then above eq. 7 becomes

    or , v=v0+at                         (8)
  • Graphically this relation is represented in figure 8 given below.
    graph between position and  time in rectilinear motion with constant acceleration
  • Thus from the graph it can be seen clearly that velocity v at time t is equal to the velocity v0 at time t=0 plus the change in velocity (at).
  • In the same way average velocity can be written as

    where x0 is the position of object at time t=0 and vavg is the averag velocity between time t=0 to time t.The above equation then gives
    x=x0+vavgt                    (9)
    but for the interval t=0 to t the average velocity is

    Now from eq. 8 we find
    vavg = v0 + ½(at)                    (11)
    putting this in eq. 9 we find
    x = x0 + v0t + ½(at2)
    or,
    x - x0 = v0t + ½(at2)                (12)
    this is the position time relation for object having uniformly accelerated motion.
  • From eq. 12 it is clear that an object at any time t has quadratic dependence on time, when it moves with constant acceleration along a straight line and x-t graph for such motion will be parabolic in natures shown below.

    velocity time graph for rectilinear motion with constant acceleration

  • Equation 8 and 12 are basic equations for constant acceleration and these two equations can be combined to get yet another relation for x , v and a eliminating t so, from 8

    putting this value of t in equation 12 and solving it we finally get,
    v2 = (v0)2 + 2a ( x - x0 )                     (13)
  • Thus from equation 13 we see that it is velocity displacement relation between velocities of object moving with constant acceleration at time t and t=0 and their corresponding positions at these intervals of time.
  • This relation 13 is helpful when we do not know time t.
  • Likewise we can also eliminate the acceleration between equation 8 and 12. Thus from equation 8


    putting this value of a in equation 12 and solving it we finally get,
    ( x - x0 ) = ½ ( v0 + v ) t               (14)
  • Same way we can also eliminate v0 using equation 8 and 12. Now from equation 8
    v0 = v - at
    putting this value of v0 in equation 12 and solving it we finally get,
    ( x - x0 ) = vt + ½ ( at2 )                (15)
    thus equation 15 does not involve initial velocity v0
  • Thus these basic equations 8 and 12 , and derived equations 13, 14, and 15 can be used to solve constant acceleration problems.


Go Back to Class 11 Maths Home page Go Back to Class 11 Physics Home page



link to us