physicscatalyst.com logo





Polynomial NCERT Exercise 2.3




NCERT Solutions for Class 10 Maths Chapter 2 Exercise 2.3

In this page we have NCERT Solutions for Class 10 Maths Chapter 2 Polynomial for Ex 2.3 on page 36. Hope you like them and do not forget to like , social_share and comment at the end of the page.
Question 1
Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:
(i) p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2
(ii) p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x
(iii) p(x) = x4 – 5x + 6, g(x) = 2 – x2
Answer
(i) p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2

Quotient = x-3 and remainder 7x – 9

(ii) p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x

Quotient = x2 + - 3 and remainder 8

(iii) p(x) = x4 – 5x + 6, g(x) = 2 – x2
Class10 EXERCISE 2.3 Question 1 (iii)
Quotient = -x2 -2 and remainder -5x +10 

Question 2.
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) t2 – 3,  2t4 + 3t3 – 2t2 – 9t – 12
(ii) x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
(iii) x3 – 3x + 1, x5 – 4x3 + x2 + 3x + 1
Answer
(i) t2 – 3, 2t4 + 3t3 – 2t2 – 9t – 12
Class 10 EXERCISE 2.3 Question 2 (i)
So
t2 – 3 exactly divides 2t4 + 3t3 – 2t2 – 9t – 12 leaving no remainder. Hence, it is a factor of 
 2t4 + 3t3 – 2t2 – 9t – 12.

(ii) x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
Polynomial EXERCISE 2.3 Question 2 (ii)
x2 + 3x + 1 exactly divides 3x4 + 5x3 – 7x2 + 2x + 2 leaving no remainder. Hence, it is factor of 3x4 + 5x3 – 7x2 + 2x + 2.

(iii) x3 – 3x + 1, x5 – 4x3 + x2 + 3x + 1

x3 – 3x + 1 didn't divides exactly x5 – 4x3 + x2 + 3x + 1 and leaves 2 as remainder. Hence, it not a factor of x5 – 4x3 + x2 + 3x + 1.

 
Question 3.
Obtain all other zeroes of 3x4 + 6x3 – 2x2 – 10x – 5, if two of its zeroes are √(5/3) and - √(5/3).
Answer
p(x) = 3x4 + 6x3 – 2x2 – 10x – 5
Since the two zeroes are √(5/3) and - √(5/3).
Therefore
[x-√(5/3)]  and  [x+√(5/3)]   are factors of the polynomial p(x)
So [x-√(5/3)]  [x+√(5/3)]   =(x2 -5/3)  is a factor of the polynomial p(x)
Let’s divide the p(x)  by (x2 -5/3)   to get remaining factors

So
P(x)= 3x4 + 6x3 – 2x2 – 10x – 5
   =(3x2 +6x+3)(x2 -5/3)
    =3(x2 +2x+1)( x2 -5/3)
We factorize x2 + 2+ 1
= (+ 1)2
Therefore, its zero is given by x + 1 = 0
x = -1
So the other  2 zeroes are x = - 1.
Hence, the zeroes of the given polynomial are √(5/3) and - √(5/3), - 1 and - 1.


Question 4.  
On dividing x3 - 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x - 2 and 
-2x + 4, respectively. Find g(x).
Answer
Here in the given question,
Dividend = x3 - 3x2 + x + 2
Quotient = x - 2
Remainder = -2x + 4
Divisor = g(x)
We know that,
Dividend = Quotient × Divisor + Remainder
⇒ x3 - 3x2 + x + 2 = (x - 2) × g(x) + (-2x + 4)
 x3 - 3x2 + x + 2 - (-2x + 4) = (x - 2) × g(x)
 x3 - 3x2 + 3x - 2 = (x - 2) × g(x)
 g(x) =  (x3 - 3x2 + 3x - 2)/ (x - 2)

g(x) = (x2 - x + 1)

Question 5
Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
(i) degree p(x) = degree q(x)
(ii) degree q(x) = degree r(x)
(iii) degree r(x) = 0
Answer
According to the division algorithm, if p(x) and g(x) are two polynomials
with g(x) ≠ 0, then we can find polynomials q(x) and r(x) such that
p(x) = g(x) × q(x) + r(x),   --(A)
where r(x) = 0 or degree of r(x) < degree of g(x)
(i)
degree p(x) = degree q(x)
From equation (A), then r(x)=0 and q(x)  =constant term
Here Let us assume the division of 9x2 + 6x + 3 by 3
Here, p(x) = 9x2 + 6x + 3
g(x) = 3
q(x) = 3x2 +2x + 1
r(x) = 0
Degree of p(x) and q(x) is same i.e. 2.
Checking for division algorithm,
p(x) = g(x) × q(x) + r(x)
Or, 9x2 + 6x + 3= 3 × (3x2 +2 + 1)
Hence, division algorithm is satisfied.

(ii)
Now degree q(x) = degree r(x)
 Let us assume the division of x3x by x2,
Here, p(x) = x3 + x
g(x) = x2
q(x) = x and r(x) = x
Clearly, the degree of q(x) and r(x) is the same i.e., 1.
Checking for division algorithm,
p(x) = g(x) × q(x) + r(x)
x3 + x = (x2 ) × x + x
x3 + x = x3 + x
Thus, the division algorithm is satisfied.
(iii)
degree r(x) = 0
Let us assume the division of x3+ 5 by x2.
Here, p(x) = x3 + 5
g(x) = x2
q(x) = x and r(x) = 5
Clearly, the degree of r(x) is 0.
Checking for division algorithm,
p(x) = g(x) × q(x) + r(x)
x3 + 5 = (x2 ) × + 5
x3 + 5 = x3 + 5
Thus, the division algorithm is satisfied

Summary

  1. NCERT book Solutions for Class 10th Maths:Polynomials Exercise 2.3 has been prepared by Expert with utmost care. If you find any mistake.Please do provide feedback on mail. You can download the solutions as PDF in the below Link also
    Download Polynomials Class10 EXERCISE 2.3 as pdf
  2. This chapter 2 has total 4 Exercise 2.1 ,2.2,2.3 and 2.4. This is the Third exercise in the chapter.You can explore previous exercise of this chapter by clicking the link below

Also Read


Books Recommended

  1. Arihant I-Succeed CBSE Sample Paper Class 10th (2024-2025)
  2. Oswaal CBSE Question Bank Class 10 Mathematics (Standard) (2024-2025)
  3. PW CBSE Question Bank Class 10 Mathematics with Concept Bank (2024-2025)
  4. Bharati Bhawan Secondary School Mathematics CBSE for Class 10th - (2024-25) Examination..By R.S Aggarwal.



Go back to Class 10 Main Page using below links

Class 10 Maths Class 10 Science



Latest Updates
Sound Class 8 Science Quiz

Limits Class 11 MCQ

Circles in Conic Sections Class 11 MCQ

Plant Kingdom free NEET mock tests

The Living World free NEET mock tests