- Important Polynomials Definitions
- |
- Geometric Meaning of the Zero's of the polynomial
- |
- Relation between coefficient and zero's of the Polynomial
- |
- Formation of polynomial when the zeros are given
- |
- Division algorithm for Polynomial

- NCERT Solutions Exercise 2.1
- |
- NCERT Solutions Exercise 2.2
- |
- NCERT Solutions Exercise 2.3
- |
- NCERT Solutions Exercise 2.4

- Polynomials important questions
- |
- Polynomials Problem and Solutions
- |
- Polynomial worksheets
- |
- Polynomial questions
- |

In this page we have *NCERT book Solutions for Class 10th Maths:Polynomials* for
Exercise 2.2 . Hope you like them and do not forget to like , social_share
and comment at the end of the page.

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i) x

(ii) 4s

(iii) 6x

(iv) 4u

(v)t

(vi) 3x

(i) x

= x

= (x - 4) (x + 2)

Therefore, the zeroes of x

(ii) 4s

From (a-b)

= (2s-1)

Therefore, the zeroes of 4s

(iii) 6x

= 6x

= 6x

= (3x + 1) (2x - 3)

Therefore, the zeroes of 6x

(iv) 4u

= 4u

= 4u(u + 2)

Therefore, the zeroes of 4u

(v) t

From (a

= (t - √15) (t + √15)

Therefore, the zeroes of t

(vi) 3x

=3x

= (3x - 4) (x + 1)

Therefore, the zeroes of 3x

S. No |
Sum of zeroes=-(Coefficient of x)/Coefficient of x^{2} |
Product of zeroes= Constant term/Coefficient of x^{2}. |

i) |
4 + (-2) = 2 = -(-2)/1 |
4 × (-2) = -8 = -8/1 |

ii) |
1/2 + 1/2 = 1 = -(-4)/4 |
1/2 × 1/2 = 1/4 |

iii) |
-1/3 + 3/2 = 7/6 = -(-7)/6 |
-1/3 × 3/2 = -1/2 = -3/6 |

iv) |
0 + (-2) = -2 = -(8)/4 |
0 × (-2) = 0 = 0/4 |

v) |
√15 + -√15 = 0 = -0/1 |
(√15) (-√15) = -15 = -15/1 |

vi) |
4/3 + (-1) = 1/3 = -(-1)/3 |
4/3 × (-1) = -4/3 |

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) 1/4, -1

(ii) √2, 1/3

(iii) 0, √5

(iv) 1,1

(v) -1/4 ,1/4

(vi) 4,1

(i) 1/4 , -1 Let the polynomial be ax

p + q = 1/4 = -b/a

pq = -1 = -4/4 = c/a

If a = 4, then b = -1, c = -4

Therefore, the quadratic polynomial is 4x

(ii) √2 , 1/3

Let the polynomial be ax

p + q = √2 = 3√2/3 = -b/a

pq = 1/3 = c/a

If a = 3, then b = -3√2, c = 1

Therefore, the quadratic polynomial is 3x

(iii) 0, √5

Let the polynomial be ax

p + q = 0 = 0/1 = -b/a

pq = √5 = √5/1 = c/a

If a = 1, then b = 0, c = √5

Therefore, the quadratic polynomial is x

(iv) 1, 1

Let the polynomial be ax

p + q = 1 = 1/1 = -b/a

pq = 1 = 1/1 = c/a

If a = 1, then b = -1, c = 1

Therefore, the quadratic polynomial is x

(v) -1/4 ,1/4

Let the polynomial be ax

p + q = -1/4 = -b/a

pq = 1/4 = c/a

If a = 4, then b = 1, c = 1

Therefore, the quadratic polynomial is 4x

(vi) 4,1

Let the polynomial be ax

p + q = 4 = 4/1 = -b/a

pq = 1 = 1/1 = c/a

If a = 1, then b = -4, c = 1

Therefore, the quadratic polynomial is x

Download Polynomials Exercise 2.2 as pdf

Given below are the links of some of the reference books for class 10 math.

- Oswaal CBSE Question Bank Class 10 Hindi B, English Communication Science, Social Science & Maths (Set of 5 Books)
- Mathematics for Class 10 by R D Sharma
- Pearson IIT Foundation Maths Class 10
- Secondary School Mathematics for Class 10
- Xam Idea Complete Course Mathematics Class 10

You can use above books for extra knowledge and practicing different questions.

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using comment box given below or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.