- Important Polynomials Definitions
- |
- Geometric Meaning of the Zero's of the polynomial
- |
- Relation between coefficient and zero's of the Polynomial
- |
- Formation of polynomial when the zeros are given
- |
- Division algorithm for Polynomial

- NCERT Solutions Exercise 2.1
- |
- NCERT Solutions Exercise 2.2
- |
- NCERT Solutions Exercise 2.3
- |
- NCERT Solutions Exercise 2.4

- Polynomials important questions
- |
- Polynomials Problem and Solutions
- |
- Polynomial worksheets
- |
- Polynomial questions
- |

$S(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+.....+a_1x+a_0$

Where $a_n,a_{n-1},....,a_1,a_0$ are constant and real numbers and an is not equal to zero

- a
_{n},a_{n-1},...,a,a_{0}are called the coefficients for x^{n},x^{n-1},..,x^{},x^{0} - n is called the degree of the polynomial
- when $a_n,a_{n-1},....,a_1,a_0$ are zero, it is called zero polynomial
- A constant polynomial is the polynomial with zero degree, it is a constant value polynomial
- A polynomial of one item is called monomial, two items binomial and three items as trinomial
- A polynomial of one degree is called linear polynomial, two degree as quadratic polynomial and degree three as cubic polynomial

$S(x)=x^2 +1$

Then

When we put the value of x=2,then

S(2)=4+1=5

The S(2) is the called the value of polynomial at x=2

In General terms, the value of polynomial at x=a is S(a)

If we draw the graph of S(x) =0, the values where the curve cuts the X-axis are called Zeros of the polynomial

- Linear polynomial has only one root
- A zero polynomial has all the real number as roots
- A constant polynomial has no zeros
- A zero of polynomial need not to be 0

$p(x)=g(x).q(x)+r(x)$

Notes

1) The degree of the reminder r(x) is always less then divisor g(x)

- for (x-a) then remainder P(a)

- for (x+a) => x -(-a), then remainder will be P(-a)
- for (ax-b) => a(x-b/a) , then remainder will be P(b/a)
- for (ax+b) => a(x+b/a),then remainder will be P(-b/a)
- for (b-ax)=> -a(x-b/a),then remainder will be P(b/a)

We know by factor theorem if (x-a) is the factor of the polynomial ,then P(a)=0.

Suppose the Polynomial is the form

P(x)= x

The factor of 6 will be 1,2,3

Now we can try the polynomial for all the values -3,-2,-1,1,2,3

Wherever it satisfies the factor theorem, we are good

In this case

P(-1)=P(-2)=P(-3)=0, we can write like this

We can put any value of x in this identity and get the value of x

In this particular case putting x=0, we get K=1

So, the final identity becomes

x

In General Term,

S(x)=a

Look for the factors in a

y= p(x) where p(x) is the polynomial of any form.

Now we can plot the equation y=p(x) on the Cartesian plane by taking various values of x and y obtained by putting the values. The plot or graph obtained can be of any shapes

The zero's of the polynomial are the points where the graph meet x axis in the Cartesian plane. If the graph does not meet x axis ,then the polynomial does not have any zero's.

Let us take some useful polynomial and shapes obtained on the Cartesian plane

- If the degree n of a polynomial is even, then the arms of the graph are either both up or both down.
- If the degree n is odd, then one arm of the graph is up and one is down.
- If the leading coefficient an is positive, the right arm of the graph is up.
- If the leading coefficient an is negative, the right arm of the graph is down

These points will help in roughly drawing the graph of any polynomial

P(x)=s(x) q(x) + r(x)

Where r(x) can be zero or degree of r(x) < degree of g(x)

Steps to divide a polynomial by another polynomial

- Arrange the term in decreasing order in both the polynomial
- Divide the highest degree term of the dividend by the highest degree term of the divisor to obtain the first term,
- Similar steps are followed till we get the reminder whose degree is less than of divisor

Divide P(x) by q(x)

$P(x)=x^4 +x +1$

$q(x)=x+1$

Following the step outlined above,here is the division

So $q(x)=x^3-x^2+x$

r(x)=1

So

$x^4 +x +1=(x+1)(x^3-x^2+x)+1$

Given below are the links of some of the reference books for class 10 math.

- Oswaal CBSE Question Bank Class 10 Hindi B, English Communication Science, Social Science & Maths (Set of 5 Books)
- Mathematics for Class 10 by R D Sharma
- Pearson IIT Foundation Maths Class 10
- Secondary School Mathematics for Class 10
- Xam Idea Complete Course Mathematics Class 10

You can use above books for extra knowledge and practicing different questions.

Thanks for visiting our website. From feedback of our visitors we came to know that sometimes you are not able to see the answers given under "Answers" tab below questions. This might happen sometimes as we use javascript there. So you can view answers where they are available by reloding the page and letting it reload properly by waiting few more seconds before clicking the button.

We really do hope that this resolve the issue. If you still hare facing problems then feel free to contact us using feedback button or contact us directly by sending is an email at **[email protected]**

We are aware that our users want answers to all the questions in the website. Since ours is more or less a one man army we are working towards providing answers to questions available at our website.